
Design and Implementation of

Speech Recognition Systems

Spring 2013

Class 7: Templates to HMMs

13 Feb 2013

1

2

Recap

• Thus far, we have looked at dynamic programming for string

matching,

• And derived DTW from DP for isolated word recognition

• We identified the search trellis, time-synchronous search as

efficient mechanisms for decoding

• We looked at ways to improve search efficiency using pruning

– In particular, we identified beam pruning as a nearly universal pruning

mechanism in speech recognition

• We looked at the limitations of DTW and template matching:

– Ok for limited, small vocabulary applications

– Brittle; breaks down if speakers change

Recap: Isolated word Speech Recognition

• The “compare” operation finds the distance between example (training)

recordings, i.e. templates of the words and the new input recording

Word1

Word2

Word3

Word-N

Recordings (templates)

compare

compare

compare

compare

Spoken input word

Lowest
distance

3

4

Recap: DTW based comparison of vector

sequences
• Trellis for alignment

– Find lowest-cost path from start node (Red) to sink node (blue)

t=0 1 2 3 4 5 6 7 8 9 10 11

M
FC

 V
ec

to
r

Se
q

u
en

ce
 fo

r
Te

m
p

la
te

MFC Vector Sequence for Input Recording

5

Recap: DTW based comparison of vector

sequences
• Trellis for alignment

– Find lowest-cost path from start node (Red) to sink node (blue)

t=0 1 2 3 4 5 6 7 8 9 10 11

M
FC

 V
ec

to
r

Se
q

u
en

ce
 fo

r
Te

m
p

la
te

MFC Vector Sequence for Input Recording

• Cost of lowest-cost path = distance between template and input

• The lowest-cost path gives us the alignment between the two sequences

node cost =
distance between
vectors

6

Recap: DTW based comparison of vector

sequences
• Trellis for alignment

– Find lowest-cost path from start node (Red) to sink node (blue)

t=0 1 2 3 4 5 6 7 8 9 10 11

M
FC

 V
ec

to
r

Se
q

u
en

ce
 fo

r
Te

m
p

la
te

MFC Vector Sequence for Input Recording

• Cost of lowest-cost path = distance between template and input

• The lowest-cost path gives us the alignment between the two sequences

Standard setup:
all edge costs
are zero

7

DTW: Dynamic Programming Algorithm

• Pi,j = best path cost from origin to node [i,j]

– i-th template frame aligns with j-th input frame

• Ci,j = local node cost of aligning template frame i to input frame j

 Pi,j = min (Pi,j-1 + Ci,j, Pi-1,j-1 + Ci,j, Pi-2,j-1 + Ci,j)

 = min (Pi,j-1, Pi-1,j-1, Pi-2,j-1) + Ci,j

– Edge costs are 0 in above formulation

 COST OF
 ALIGNMENT

t=0 1 2 3 4 5 6 7 8 9 10 11

8

Today’s Topics

• Generalize DTW based recognition

• Extend to multiple templates

• Move on to Hidden Markov Models

• Look ahead: The fundamental problems of HMMs

– Introduce the three fundamental problems of HMMs

• Two of the problems deal with decoding using HMMs, solved using the

forward and Viterbi algorithms

• The third dealing with estimating HMM parameters (seen later)

– Incorporating prior knowledge into the HMM framework

– Different types of probabilistic models for HMMs

• Discrete probability distributions

• Continuous, mixture Gaussian distributions

DTW Using A Single Template

T
E

M
P

L
A

T
E

DATA

We’ve seen the DTW alignment of data to model

10

Limitations of A Single Template

• A single template cannot capture all the possible

variations in how a word can be spoken

• Alternative: use multiple templates for each word

– Match the input against each one

DTW with multiple templates

DATA

TEMPLATES

DATA

TEMPLATES

Each template warps differently to best match the input; the best matching
template is selected

DTW with multiple templates

13

Problem With Multiple Templates

• Finding the best match requires the evaluation of many more

templates (depending on the number)

– This can be computationally expensive

• Important for handheld devices, even for small-vocabulary applications

• Think battery life!

– Need a method for reducing multiple templates into a single one

• Even multiple templates do not cover the space of possible

variations

– Need mechanism of generalizing from the templates to include data not

seen before

• We can achieve both objectives by averaging all the templates for

a given word

14

Generalizing from Templates

• Generalization implies going from the given templates to

one that also represents others that we have not seen

• Taking the average of all available templates may

represent the recorded templates less accurately, but will

represent other unseen templates more robustly

• A general template (for a word) should capture all salient

characteristics of the word, and no more

– Goal: Improving accuracy

• We will consider several steps to accomplish this

15

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

16

Template Averaging

• How can we average the templates when they’re of different

lengths?

– Somehow need to normalize them to each other

• Solution: Apply DTW (of course!)

– Pick one template as a “master”

– Align all other templates to it

– Use the alignments generated to compute their average

• Note: Choosing a different master template will lead to a different

average template

– Which template to choose as the master?

• Trial and error

DTW with multiple templates
TEMPLATES

T1 T2 T3

T4

T4

T3

T4
T3

Align T4 and T3

Master
template

TEMPLATES

T1 T2 T3 T4

T4
T3

T2

T1

Average Template

Align T4/T2 and T4/T1, similarly; then average all of them

Average all feature vectors aligned
against each other

DTW with multiple templates

19

Benefits of Template Averaging

• We have eliminated the computational cost of

having multiple templates for each word

• Using the averages of the aligned feature vectors

generalizes from the samples

– The average is representative of the templates

– More generally, assumed to be representative of future

utterances of the word

• The more the number of templates averaged, the

better the generalization

20

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

21

Template Size Reduction

• Can we do better? Consider the template for “something”:

• Here, the template has been manually segmented into 6

segments, where each segment is a single phoneme

• Hence, the frames of speech that make up any single segment

ought to be fairly alike

• If so, why not replace each segment by a single representative

feature vector?

– How? Again by averaging the frames within the segment

• This gives a reduction in the template size (memory size)

template s o me th i ng

DATA

Example: Single Templates With Three Segments

T
E

M
P

L
A

T
E

The feature vectors within each segment are assumed to be similar to
each other

Three segments

Averaging Each Template Segment





segmenti

ivector
N

VectorModel)(
1





segmenti

ivector
N

VectorModel)(
1





segmenti

ivector
N

VectorModel)(
1

()

1
()j

i segment jj

m x i
N 

 
mj is the model vector for the jth segment

Nj is the number of vectors in the jth segment

x(i) is the ith feature vector

T
E

M
P

L
A

T
E

DATA

Template With One Model Vector Per Segment

Just one template vector per segment

M
O

D
E

L

DATA

DTW with one model

The averaged template is matched against the data string to be recognized

Select the word whose averaed template has the lowest cost of match

DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point

DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point

(),

1
()

k

j k

i segment jk jk

m x i
N 

 


mj is the model vector for the jth segment

Nk,j is the number of training vectors in the

jth segment of the kth training sequence

xk(i) is the ith vector of the kth training

sequence

T1 T2 T3 T4

MODELS

A
V

G
.

M
O

D
E

L

segmentk(j) is the jth segment of the

kth training sequence

DTW with multiple models

A
V

G
.

M
O

D
E

L

DATA

DTW with multiple models

Segment all templates, average each region into a single point

To get a simple average model, which is used for recognition

30

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

31

• The inherent variation between vectors is
different for the different segments

– E.g. the variation in the colors of the beads
in the top segment is greater than that in the
bottom segment

• Ideally we should account for the
differences in variation in the segments

– E.g, a vector in a test sequence may actually
be more matched to the central segment,
which permits greater variation, although it
is closer, in a Euclidean sense, to the mean
of the lower segment, which permits lesser
variation

DTW with multiple models

T1 T2 T3 T4

MODELS

   
(),

1
() ()

k

T

j k j k j

i segment jk jk

C x i m x i m
N 

  


mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

segment

T1 T2 T3 T4

MODELS

We can define the covariance for each

segment using the standard formula

for covariance

DTW with multiple models

33

• The distance function must be modified to account for the

covariance

• Mahalanobis distance:

– Normalizes contribution of all dimensions of the data

DTW with multiple models

1(,) () ()T

j j j jd x m x m C x m  

– x is a data vector, mj is the mean of a segment, Cj is the

covariance matrix for the segment

• Negative Gaussian log likelihood:

– Assumes a Gaussian distribution for the segment and computes

the probability of the vector on this distribution

 

10.5() ()1
(; ,)

2

T
j j jx m C x m

j j
D

j

Gaussian x m C e
C

  


 (,) log (; ,j j jd x m Gaussian x m C     10.5log 2 0.5() ()
D T

j j j jC x m C x m    

34

• The variance that we have computed is a full covariance matrix

– And the distance measure requires a matrix inversion

The Covariance

   
()

1
() ()

k

T

j k j k j

k i segment jkk

C x i m x i m
N 

   


• In practice we assume that all off-diagonal terms in the matrix are 0

• This reduces our distance metric to:

1(,) () ()T

j j j jd x m x m C x m  

• Where the individual variance terms s2 are

2

,

2

,

()
(,)

l j l

j

l j l

x m
d x m

s




 2 2

, , ,

()

1
()

k

j l k l j l

k i segment jkk

x i m
N

s


  


• If we use a negative log Gaussian instead, the modified score (with the

diagonal covariance) is

,

,

2

,2

2

()
(,) 0.5 log(2) 0.5j l

j l

l j l

j

l l

x m
d x m s

s


  























2

2

2

2

1

00

00

00

Ns

s

s































2

,2,1,

,2

2

2,21,2

,12,1

2

1,1

NNNN

N

N

sss

sss

sss









• Simple uniform segmentation of training instances is not the most

effective method of grouping vectors in the training sequences

• A better segmentation strategy is to segment the training

sequences such that the vectors within any segment are most alike

– The total distance of vectors within each segment from the model vector

for that segment is minimum

– For a global optimum, the total distance of all vectors from the model for

their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative procedure to

estimate the optimal segmentation

Segmental K-means

T1 T2 T3 T4

Alignment for training a model from

multiple vector sequences
MODELS

A
V

G
.

M
O

D
E

L

Initialize by uniform segmentation

T4 T1 T2 T3

Initialize by uniform segmentation

Alignment for training a model from

multiple vector sequences

T4 T1 T2 T3

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Alignment for training a model from

multiple vector sequences

T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from

multiple vector sequences

T1 T2
T3NEW

T4NEW

Alignment for training a model from

multiple vector sequences

T1

T3NEW

T2NEW

T4NEW

Alignment for training a model from

multiple vector sequences

T3NEW

T2NEW

T1NEW

T4NEW

Alignment for training a model from

multiple vector sequences

T4NEW T1NEW

T2NEW

T3NEW

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations

Alignment for training a model from

multiple vector sequences

T4NEW

T1NEW

T2NEW

T3NEW

Alignment for training a model from

multiple vector sequences

T4NEW T1NEW

T2NEW

T3NEW

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for

all training sequences does not change significantly with further

refinement of the model

Alignment for training a model from

multiple vector sequences

Shifted terminology

STATE

mj , s
2

j,l

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS

or

PARAMETER VECTORS

MODEL

47

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

Transition structures in models

DATA

 M
O

D
E

L

The converged models can be used to score / align data sequences

Model structure is incomplete.

49

• Some segments are naturally longer than others

– E.g., in the example the initial (yellow) segments are

usually longer than the second (pink) segments

• This difference in segment lengths is different

from the variation within a segment

– Segments with small variance could still persist very

long for a particular sound or word

• The DTW algorithm must account for these

natural differences in typical segment length

• This can be done by having a state specific

insertion penalty

– States that have lower insertion penalties persist

longer and result in longer segments

DTW with multiple models

T4NEW T1NEW

T2NEW

T3NEW

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

T11

T22

T33

T12

T23

T34

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33

DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13

Transition structures in models

• Transition behavior can be expressed with probabilities

– For segments that are typically long, if a data vector is within

that segment, the probability that the next vector will also be

within it is high

– If a vector in the ith segment is typically followed by a vector

in the jth segment, but also rarely by vectors from the kth

segment, then..

• if a data vector is within the ith segment, the probability that the next

data vector lies in the jth segment is greater than the probability that it

lies in the kth segment

What should the transition scores be

• A good choice for transition scores is the negative

logarithm of the probabilities of the transitions

– Tii is the negative of the log of the probability that if the

current data vector belongs to the ith state, the next data vector

will also belong to the ith state

– Tij is the negative of the log of the probability that if the

current data vector belongs to the ith state, the next data vector

belongs to the jth state

– More probable transitions are less penalized. Impossible

transitions are infinitely penalized

What should the transition scores be

55

Modified segmental K-means AKA

Viterbi training

T4NEW T1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment

(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment

(state) of the kth training sequence that were

followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20

 No of vectors from the 1st state that were

 followed by vectors from the 1st state = 16

 P11 = 16/20 = 0.8; T11 = -log(0.8)

)log(
,

,,

ijij

k ik

k jik

ij PT
N

N
P 




• Transition scores can be easily computed by a

simple extension of the segmental K-means

algorithm

• Probabilities can be counted by simple counting

56

Modified segmental K-means AKA

Viterbi training

T4NEW T1NEW

T2NEW

T3NEW

)log(0

0

jj

j

j PT
N

N
P 

• A special score is the penalty associated with

starting at a particular state

• In our examples we always begin at the first state

• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1

• It is sometimes useful to permit entry directly into

later states

– i.e. permit deletion of initial states

• The score for direct entry into any state can be

computed as

• N is the total number of training sequences

• N0j is the number of training sequences for which

the first data vector was in the jth state

N = 4

N01 = 4

N02 = 0

N03 = 0

Transition from an initial “dummy” state

T11

T22

T33

T12

T23

T34

T13

What is the Initial State Probability?

T02
T03

T01

• Initializing state parameters

– Segment all training instances uniformly, learn means and variances

• Initializing T0j scores

– Count the number of permitted initial states

• Let this number be M0

– Set all permitted initial states to be equiprobable: Pj = 1/M0

– T0j = -log(Pj) = log(M0)

• Initializing Tij scores

– For every state i, count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification

• Let this number be Mi

– Set all permitted transitions to be equiprobable: Pij = 1/Mi

– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization

– You may choose to initialize parameters differently, e.g. by random values

Modified segmental K-means AKA

Viterbi training

• The entire segmental K-means algorithm:

1. Initialize all parameters

• State means and covariances

• Transition scores

• Entry transition scores

2. Segment all training sequences

3. Reestimate parameters from segmented

training sequences

4. If not converged, return to 2

Modified segmental K-means AKA

Viterbi training

Alignment for training a model from

multiple vector sequences

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate

61

The resulting model structure is

also known as an HMM!

62

• This structure is a generic representation of a statistical

model for processes that generate time series

• The “segments” in the time series are referred to as states

– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization

of the DTW models we have discussed thus far

• In this example -- strict left-to-right topology

– Commonly used for speech recognition

DTW and Hidden Markov Models (HMMs)

T11 T22 T33

T12 T23

T13

63

DTW -- Reversing Sense of “Cost”

• Use “Score” instead of “Cost”

– The same cost function but with the sign changed

– E.g. for at a node: negative Euclidean distance

 = –√(xi – yi)
2;

– –(xi – yi)
2; i.e. –ve Euclidean distance squared

– Other terms possible:

• Remember the Gaussian

64

DTW with costs

• Node and edge costs defined for trellis

• Find minimum cost path through trellis..

t=0 1 2 3 4 5 6 7 8 9 10 11

Each node
has a cost

Each edge
has a cost

65

DTW: Finding minimum-cost path

• Pi,j = best path cost from origin to node [i,j]

• Ci,j = local node cost of aligning template frame i to input frame j

• Ti,j,k,l = Edge cost from node (i,j) to node (k,l)

 Pi,j = min (Pi,j-1+ Ti,j-1,i,j , Pi-1,j-1 + Ti-1,,j-1,i,j , Pi-2,j-1 + Ti-2,j-1,i,j ,) + Ci,j

– MINIMIZE TOTAL PATH COST

t=0 1 2 3 4 5 6 7 8 9 10 11

66

DTW with scores

• Node and edge scores defined for trellis

• Find maximum score path through trellis..

t=0 1 2 3 4 5 6 7 8 9 10 11

Each node
has a score

Each edge
has a score

67

DTW: finding maximum-score path

• Pi,j = best path score from origin to node [i,j]

• Ci,j = local node score of aligning template frame i to input frame j

• Ti,j,k,l = Edge score from node (i,j) to node (k,l)

 Pi,j = max (Pi,j-1+ Ti,j-1,i,j , Pi-1,j-1 + Ti-1,,j-1,i,j , Pi-2,j-1 + Ti-2,j-1,i,j ,) + Ci,j

– MAXIMIZE TOTAL PATH SCORE

t=0 1 2 3 4 5 6 7 8 9 10 11

68

Probabilities for Scores

• HMM – inference equivalent to DTW modified to use a

probabilistic function, for the local node or edge “scores”

in the trellis

– Edges have transition probabilities

– Nodes have output or observation probabilities

• They provide the probability of the observed input

• The output probability may be a Gaussian

– The goal is to find the template with highest probability of

matching the input

• Probability values as “scores” are also called likelihoods

69

Log Likelihoods
• The problem with probabilities: The probabilities of unrelated

variables multiply
– P(X,Y) = P(X)*P(Y)

• Probabilities multiply along the path

– Scores combines multiplicatively along a path

– score of a path = Product_over_nodes(score of node) *
Product_over_edges(score of edge)

• Use log probabilities as scores

– Scores add as in DTW

• Max instead of Min

• May use negative log probabilities

– Cost adds as in DTW

70

HMM = DTW with scores

• Node and edge scores are log probabilities

• Find maximum score path through trellis..

t=0 1 2 3 4 5 6 7 8 9 10 11

Node score =
log P(xt | j)

Edge score (i,t->k,t+1) = log probability (Tij)

71

• A Hidden Markov Model consists of two components

– A state/transition backbone that specifies how many states there are, and how

they can follow one another

– A set of probability distributions, one for each state

Hidden Markov Models

• This can be factored into two separate probabilistic entities

– A probabilistic Markov chain with states and transitions

– A set of data probability distributions, associated with the states

Markov chain

Data distributions

Basic Structural Questions for HMM

• What is the structure like?

– What transitions are allowed

– How many states?

• What are the probability distributions

associated with states?

72

Markov chain

Data distributions

73

Determining the Number of States

• The correct number of states for any word?

– We do not know, really

– Ideally there should be at least one state for each “basic

sound” within the word

• Otherwise widely differing sounds may be collapsed into one state

– For efficiency, the number of states should the minimum

needed to achieve the desired level of recognition accuracy

– These two are conflicting requirements, usually solved by

making some educated guesses

74

Determining the Number of States

• For small vocabularies, it is possible to examine
each word in detail and arrive at reasonable
numbers:

• For larger vocabularies, we may be forced to rely on
some ad hoc principles
– E.g. proportional to the number of letters in the word

• Works better for some languages than others

• Spanish, Japanese (Katakana/Hiragana), Indian languages..

S O ME TH I NG

What about the transition structure

• Speech is a left to right process

– With a deterministic structure to any word

• Prespecified set of sounds in prespecified order

– Although some sounds may occasionally be skipped

• This suggests the following kind of structure

• The Bakis topology

75

Markov chain

76

The Transition Probabilities?

T4NEW T1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment

(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment

(state) of the kth training sequence that were

followed by vectors from the jth segment (state)

,

,,






k ik

k jik

ij
N

N
P

• Transition probabilities are just the probability of

making transitions

• As before, can be obtained by simple counting

Basic Structural Questions for HMM

• What is the structure like?

– What transitions are allowed

– How many states?

• What are the probability distributions

associated with states?

77

Markov chain

Data distributions

State Output Distributions

• The state output distribution for

any state is the distribution of all

vectors associated with that state

• It is the distribution of all vectors

validly associated with the state

• From all potential instances of the

word

• Not just the training (template)

recordings

• We have implicitly assumed this

to be Gaussian so far

79

,
,

2

,

22

()1
(|) exp 0.5

2 j l
j l

l j l

l

l

x m
P x j

ss

 
  

 
 




The State Output Distribution

• The state output distribution is a probability distribution associated with each HMM
state

– The negative log of the probability of any vector as given by this distribution would be the node
cost in DTW

• The state output probability distribution could be any distribution at all

• We have assumed so far that state output distributions are Gaussian

• More generically, we can assume it to be a mixture of Gaussians

• More on this later

,

,

2

,2

2

()
() log((|)) 0.5 log(2) 0.5j l

j l

l j l

j

l l

x m
d v P x j s

s


    

() log((|))jd v P x j 
, ,

, ,

2

, ,

22

()
(|) exp 0.5

2 j k l
j k l

l j k lk

k l

l

x mw
P x j

ss

 
  

 
 

 


Node cost for
DTW (note change
in notation)

80

• We have seen how to compute all probability terms for this
structure

• Sufficient information to compute all terms in a trellis

The complete package

Pij or log Pij
P(x|j) or log P(x|j)

We continue in the next class..

81

