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Recap 

• Thus far, we have looked at dynamic programming for string 

matching, 

• And derived DTW from DP for isolated word recognition 

• We identified the search trellis, time-synchronous search as 

efficient mechanisms for decoding 

• We looked at ways to improve search efficiency using pruning 

– In particular, we identified beam pruning as a nearly universal pruning 

mechanism in speech recognition 

• We looked at the limitations of DTW and template matching: 

– Ok for limited, small vocabulary applications 

– Brittle; breaks down if speakers change 



Recap: Isolated word Speech Recognition 

• The “compare” operation finds the distance between example (training) 

recordings, i.e. templates of the words and the new input recording 

Word1 

Word2 

Word3 

Word-N 

Recordings (templates) 

compare 

compare 

compare 

compare 

Spoken input word 

Lowest 
distance 
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Recap: DTW based comparison of  vector 

sequences 
• Trellis for alignment 

– Find lowest-cost path from start node (Red) to sink node (blue) 
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MFC Vector Sequence for Input Recording 
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Recap: DTW based comparison of  vector 

sequences 
• Trellis for alignment 

– Find lowest-cost path from start node (Red) to sink node (blue) 
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MFC Vector Sequence for Input Recording 

• Cost of lowest-cost path = distance between template and input 

• The lowest-cost path gives us the alignment between the two sequences 



node cost =  
distance between 
vectors 
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Recap: DTW based comparison of  vector 

sequences 
• Trellis for alignment 

– Find lowest-cost path from start node (Red) to sink node (blue) 
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MFC Vector Sequence for Input Recording 

• Cost of lowest-cost path = distance between template and input 

• The lowest-cost path gives us the alignment between the two sequences 

Standard setup: 
all edge costs 
are zero 
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DTW: Dynamic Programming Algorithm 

• Pi,j = best path cost from origin to node [i,j] 

– i-th template frame aligns with j-th input frame 

• Ci,j = local node cost of aligning template frame i to input frame j 
 

  Pi,j = min (Pi,j-1 + Ci,j,  Pi-1,j-1 + Ci,j,  Pi-2,j-1 + Ci,j) 

  = min (Pi,j-1,  Pi-1,j-1,  Pi-2,j-1) + Ci,j 

 

– Edge costs are 0 in above formulation 

                                                                                                                       COST OF 
                                                                                                              ALIGNMENT 

 

t=0 1 2 3 4 5 6 7 8 9 10 11 
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Today’s Topics 

• Generalize DTW based recognition 

• Extend to multiple templates 

• Move on to Hidden Markov Models 

• Look ahead: The fundamental problems of HMMs 

– Introduce the three fundamental problems of HMMs 

• Two of the problems deal with decoding using HMMs, solved using the 

forward and Viterbi algorithms 

• The third dealing with estimating HMM parameters (seen later) 

– Incorporating prior knowledge into the HMM framework 

– Different types of probabilistic models for HMMs 

• Discrete probability distributions 

• Continuous, mixture Gaussian distributions 



DTW Using A Single Template 
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DATA 

We’ve seen the DTW alignment of data to model 
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Limitations of  A Single Template 

• A single template cannot capture all the possible 

variations in how a word can be spoken 
 

• Alternative: use multiple templates for each word 

– Match the input against each one 



DTW with multiple templates 

DATA 

TEMPLATES 



DATA 

TEMPLATES 

Each template warps differently to best match the input; the best matching 
template is selected 

DTW with multiple templates 
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Problem With Multiple Templates 

• Finding the best match requires the evaluation of many more 

templates (depending on the number) 

– This can be computationally expensive 

• Important for handheld devices, even for small-vocabulary applications 

• Think battery life! 

– Need a method for reducing multiple templates into a single one 

 

• Even multiple templates do not cover the space of possible 

variations 

– Need mechanism of generalizing from the templates to include data not 

seen before 

 

• We can achieve both objectives by averaging all the templates for 

a given word 
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Generalizing from Templates 

• Generalization implies going from the given templates to 

one that also represents others that we have not seen 
 

• Taking the average of all available templates may 

represent the recorded templates less accurately, but will 

represent other unseen templates more robustly 
 

• A general template (for a word) should capture all salient 

characteristics of the word, and no more 

– Goal: Improving accuracy 
 

• We will consider several steps to accomplish this 
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Improving the Templates 

• Generalization by averaging the templates 

 

• Generalization by reducing template length 

 

• Accounting for variation within templates 

represented by the reduced model 

 

• Accounting for varying segment lengths 
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Template Averaging 

• How can we average the templates when they’re of different 

lengths? 

– Somehow need to normalize them to each other 
 

• Solution: Apply DTW (of course!) 

– Pick one template as a “master” 

– Align all other templates to it 

– Use the alignments generated to compute their average 

 

• Note: Choosing a different master template will lead to a different 

average template 

– Which template to choose as the master? 

• Trial and error 



DTW with multiple templates 
TEMPLATES 

T1 T2 T3 

T4 

T4 

T3 

T4 
T3 

Align T4 and T3 

Master 
template 



TEMPLATES 

T1 T2 T3 T4 

T4 
T3 

T2 

T1 

Average Template 

Align T4/T2 and T4/T1, similarly; then average all of them 

Average all feature vectors aligned 
against each other 

DTW with multiple templates 
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Benefits of  Template Averaging 

• We have eliminated the computational cost of 

having multiple templates for each word 
 

• Using the averages of the aligned feature vectors 

generalizes from the samples 

– The average is representative of the templates 

– More generally, assumed to be representative of future 

utterances of the word 
 

• The more the number of templates averaged, the 

better the generalization 
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Improving the Templates 

• Generalization by averaging the templates 

 

• Generalization by reducing template length 

 

• Accounting for variation within templates 

represented by the reduced model 

 

• Accounting for varying segment lengths 
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Template Size Reduction 

• Can we do better?  Consider the template for “something”: 
 

 

• Here, the template has been manually segmented into 6 

segments, where each segment is a single phoneme 

• Hence, the frames of speech that make up any single segment 

ought to be fairly alike 

• If so, why not replace each segment by a single representative 

feature vector? 

– How?  Again by averaging the frames within the segment 
 

• This gives a reduction in the template size (memory size) 

template s o me th i ng 
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Example: Single Templates With Three Segments 
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The feature vectors within each segment are assumed to be similar to 
each other 

Three segments 



Averaging Each Template Segment 
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DATA 

Template With One Model Vector Per Segment 

Just one template vector per segment 
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DATA 

DTW with one model 

The averaged template is matched against the data string to be recognized 

Select the word whose averaed template has the lowest cost of match  



DTW with multiple models 

MODELS 

DATA 

Segment all templates 

Average each region into a single point 



DTW with multiple models 

MODELS 

DATA 

Segment all templates 

Average each region into a single point 
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mj is the model vector for the jth segment 

 

Nk,j is the number of training vectors in the 

jth segment of the kth training sequence 

 

xk(i) is the ith vector of the kth training 

sequence 

T1 T2 T3 T4 
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segmentk(j) is the jth segment of the 

kth training sequence 

DTW with multiple models 
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DATA 

DTW with multiple models 

Segment all templates, average each region into a single point 

To get a simple average model, which is used for recognition 
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Improving the Templates 

• Generalization by averaging the templates 

 

• Generalization by reducing template length 

 

• Accounting for variation within templates 

represented by the reduced model 

 

• Accounting for varying segment lengths 
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• The inherent variation between vectors is 
different for the different segments 

– E.g. the variation in the colors of the beads 
in the top segment is greater than that in the 
bottom segment 

 

• Ideally we should account for the 
differences in variation in the segments 

– E.g, a vector in a test sequence may actually 
be more matched to the central segment, 
which permits greater variation, although it 
is closer, in a Euclidean sense, to the mean 
of the lower segment, which permits lesser 
variation 

DTW with multiple models 

T1 T2 T3 T4 

MODELS 
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mj is the model vector for the jth segment 

 

Cj is the covariance of the vectors in the jth  

segment 

T1 T2 T3 T4 

MODELS 

We can define the covariance for each 

segment using the standard formula 

for covariance 

DTW with multiple models 
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• The distance function must be modified to account for the 

covariance 

• Mahalanobis distance: 

– Normalizes contribution of all dimensions of the data 

DTW with multiple models 
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j j j jd x m x m C x m  

– x is a data vector, mj is the mean of a segment, Cj is the 

covariance matrix for the segment 

• Negative Gaussian log likelihood: 

– Assumes a Gaussian distribution for the segment and computes 

the probability of the vector on this distribution 
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• The variance that we have computed is a full covariance matrix 

– And the distance measure requires a matrix inversion 

The Covariance 
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• In practice we assume that all off-diagonal terms in the matrix are 0 

• This reduces our distance metric to: 
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• If we use a negative log Gaussian instead, the modified score (with the 
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• Simple uniform segmentation of training instances is not the most 

effective method of grouping vectors in the training sequences 

 

• A better segmentation strategy is to segment the training 

sequences such that the vectors within any segment are most alike 

– The total distance of vectors within each segment from the model vector 

for that segment  is minimum 

– For a global optimum, the total distance of all vectors from the model for 

their respective segments must be minimum 

 

• This segmentation must be estimated 

 

• The segmental K-means procedure is an iterative procedure to 

estimate the optimal segmentation 

Segmental K-means 
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Alignment for training a model from 

multiple vector sequences 
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Initialize by uniform segmentation 



T4 T1 T2 T3 

Initialize by uniform segmentation 

Alignment for training a model from 

multiple vector sequences 



T4 T1 T2 T3 

Initialize by uniform segmentation 

Align each template to the averaged model to get new segmentations 

Alignment for training a model from 

multiple vector sequences 



T1 T2 T3 

T4OLD 

T4NEW 

Alignment for training a model from 

multiple vector sequences 



T1 T2 
T3NEW 

T4NEW 

Alignment for training a model from 

multiple vector sequences 



T1 

T3NEW 

T2NEW 

T4NEW 

Alignment for training a model from 

multiple vector sequences 



T3NEW 

T2NEW 

T1NEW 

T4NEW 

Alignment for training a model from 

multiple vector sequences 



T4NEW T1NEW 

T2NEW 

T3NEW 

Initialize by uniform segmentation 

Align each template to the averaged model to get new segmentations 

Recompute the average model from new segmentations 

Alignment for training a model from 

multiple vector sequences 



T4NEW 

T1NEW 

T2NEW 

T3NEW 

Alignment for training a model from 

multiple vector sequences 



T4NEW T1NEW 

T2NEW 

T3NEW 

T1 T2 T3 T4 

The procedure can be continued until convergence 

 

Convergence is achieved when the total best-alignment error for 

all training sequences does not change significantly with further 

refinement of the model 

Alignment for training a model from 

multiple vector sequences 



Shifted terminology 

STATE 

mj , s
2

j,l
 

SEGMENT 

TRAINING DATA 

TRAINING DATA VECTOR 

SEGMENT BOUNDARY 

MODEL PARAMETERS 

or 

PARAMETER VECTORS 

MODEL 
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Improving the Templates 

• Generalization by averaging the templates 

 

• Generalization by reducing template length 

 

• Accounting for variation within templates 

represented by the reduced model 

 

• Accounting for varying segment lengths 



Transition structures in models 
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The converged models can be used to score / align data sequences 

Model structure is incomplete. 
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• Some segments are naturally longer than others 

– E.g., in the example the initial (yellow) segments are 

usually longer than the second (pink) segments 
 

• This difference in segment lengths is different 

from the variation within a segment 

– Segments with small variance could still persist very 

long for a particular sound or word 
 

• The DTW algorithm must account for these 

natural differences in typical segment length 
 

• This can be done by having a state specific 

insertion penalty 

– States that have lower insertion penalties persist 

longer and result in longer segments 

DTW with multiple models 

T4NEW T1NEW 

T2NEW 

T3NEW 



Transition structures in models 

DATA 

State specific insertion penalties are represented as  
self transition arcs for model vectors. Horizontal edges within the 
trellis will incur a penalty associated with the corresponding arc. 
Every transition within the model can have its own penalty. 

T11 

T22 

T33 

T12 

T23 

T34 



Transition structures in models 

DATA 

State specific insertion penalties are represented as  
self transition arcs for model vectors. Horizontal edges within the 
trellis will incur a penalty associated with the corresponding arc. 
Every transition within the model can have its own penalty or score 

T11 

T22 

T33 

T12 

T23 

T34 

T01 

T11 T11 

T12 

T23 

T33 T33 



DATA 

This structure also allows the inclusion of arcs that permit the 
central state to be skipped (deleted) 
Other transitions such as returning to the first state from the 
last state can be permitted by inclusion of appropriate arcs 

T11 

T22 

T33 

T12 

T23 

T34 

T13 

Transition structures in models 



• Transition behavior can be expressed with probabilities 

 

– For segments that are typically long, if a data vector is within 

that segment, the probability that the next vector will also be 

within it is high 

 

– If a vector in the ith  segment is typically followed by a vector 

in the jth segment, but also rarely by vectors from the kth 

segment, then..  

• if a data vector is within the ith segment, the probability that the next 

data vector lies in the jth segment is greater than the probability that it 

lies in the kth segment 

What should the transition scores be 



• A good choice for transition scores is the negative 

logarithm of the probabilities of the transitions 

– Tii is the negative of the log of the probability that if the 

current data vector belongs to the ith state, the next data vector 

will also belong to the ith state 

– Tij is the negative of the log of the probability that if the 

current data vector belongs to the ith state, the next data vector 

belongs to the jth state 

– More probable transitions are less penalized. Impossible 

transitions are infinitely penalized 

What should the transition scores be 
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Modified segmental K-means AKA 

Viterbi training 

T4NEW T1NEW 

T2NEW 

T3NEW 

• Nk,i is the number of vectors in the ith  segment 

(state) of the kth training sequence 

• Nk,i,j is the number of vectors in the ith segment 

(state) of the kth training sequence that were 

followed by vectors from the jth segment (state) 

– E.g., No. of vectors in the 1st (yellow) state = 20 

         No of vectors from the 1st state that were 

         followed by vectors from the 1st state = 16 

         P11 = 16/20 = 0.8;   T11 = -log(0.8) 

)log(              
,
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k ik

k jik

ij PT
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N
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


• Transition scores can be easily computed by a 

simple extension of the segmental K-means 

algorithm 
 

• Probabilities can be counted by simple counting 
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Modified segmental K-means AKA 

Viterbi training 

T4NEW T1NEW 

T2NEW 

T3NEW 

)log(              0

0
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j PT
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• A special score is the penalty associated with 

starting at a particular state 

• In our examples we always begin at the first state 

• Enforcing this is equivalent to setting T01 = 0, 

T0j = infinity for j != 1 

• It is sometimes useful to permit entry directly into 

later states 

– i.e. permit deletion of initial states 

• The score for direct entry into any state can be 

computed as 

• N is the total number of training sequences 

• N0j is the number of training sequences for which 

the first data vector was in the jth state  

N = 4 

N01 = 4 

N02 = 0 

N03 = 0 



Transition from an initial “dummy” state 

T11 

T22 

T33 

T12 

T23 

T34 

T13 

What is the Initial State Probability? 

T02 
T03 

T01 



• Initializing state parameters 

– Segment all training instances uniformly, learn means and variances 
 

• Initializing T0j scores 

– Count the number of permitted initial states 

• Let this number be M0 

– Set all permitted initial states to be equiprobable:  Pj = 1/M0 

– T0j = -log(Pj) = log(M0) 
 

• Initializing Tij scores 

– For every state i,  count the number of states that are permitted to follow 

• i.e. the number of arcs out of the state, in the specification 

• Let this number be Mi 

– Set all permitted transitions to be equiprobable:  Pij = 1/Mi 

– Initialize Tij = -log(Pij) = log(Mi) 
 

• This is only one technique for initialization 

– You may choose to initialize parameters differently, e.g. by random values 

Modified segmental K-means AKA 

Viterbi training 



• The entire segmental K-means algorithm: 

1. Initialize all parameters 

• State means and covariances 

• Transition scores 

• Entry transition scores 

2. Segment all training sequences 

3. Reestimate parameters from segmented 

training sequences 

4. If not converged, return to 2 

Modified segmental K-means AKA 

Viterbi training 



Alignment for training a model from 

multiple vector sequences 

T1 T2 T3 T4 

The procedure can be continued until convergence 
 
Convergence is achieved when the total best-alignment error for 
all training sequences does not change significantly with further 
refinement of the model 

Initialize Iterate 
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The resulting model structure is 

also known as an HMM! 
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• This structure is a generic representation of a statistical 

model for processes that generate time series 

• The “segments” in the time series are referred to as states 

– The process passes through these states to generate time series 

• The entire structure may be viewed as one generalization 

of the DTW models we have discussed thus far 

• In this example -- strict left-to-right topology 

– Commonly used for speech recognition 

DTW and Hidden Markov Models (HMMs) 

T11  T22  T33  

T12  T23  

T13  
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DTW -- Reversing Sense of  “Cost” 

• Use “Score” instead of “Cost” 

– The same cost function but with the sign changed  
 

– E.g. for at a node: negative Euclidean distance 

 = –√(xi – yi)
2;  

 

– –(xi – yi)
2; i.e. –ve Euclidean distance squared 

 

– Other terms possible: 

• Remember the Gaussian 
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DTW with costs 

• Node and edge costs defined for trellis 

• Find minimum cost path through trellis.. 

t=0 1 2 3 4 5 6 7 8 9 10 11 

Each node 
has a cost 

Each edge 
has a cost 
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DTW: Finding minimum-cost path 

• Pi,j = best path cost from origin to node [i,j] 

• Ci,j = local node cost of aligning template frame i to input frame j 

• Ti,j,k,l = Edge cost from node (i,j) to node (k,l) 
 

  Pi,j = min (Pi,j-1+ Ti,j-1,i,j , Pi-1,j-1 + Ti-1,,j-1,i,j ,  Pi-2,j-1 + Ti-2,j-1,i,j ,) + Ci,j 

 

– MINIMIZE TOTAL PATH COST 

t=0 1 2 3 4 5 6 7 8 9 10 11 
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DTW with scores 

• Node and edge scores defined for trellis 

• Find maximum score path through trellis.. 

t=0 1 2 3 4 5 6 7 8 9 10 11 

Each node 
has a score 

Each edge 
has a score 
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DTW: finding maximum-score path 

• Pi,j = best path score from origin to node [i,j] 

• Ci,j = local node score of aligning template frame i to input frame j 

• Ti,j,k,l = Edge score from node (i,j) to node (k,l) 
 

  Pi,j = max (Pi,j-1+ Ti,j-1,i,j , Pi-1,j-1 + Ti-1,,j-1,i,j ,  Pi-2,j-1 + Ti-2,j-1,i,j ,) + Ci,j 

 

– MAXIMIZE TOTAL PATH SCORE 

t=0 1 2 3 4 5 6 7 8 9 10 11 
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Probabilities for Scores 

• HMM – inference equivalent to DTW modified to use a 

probabilistic function, for the local node or edge “scores” 

in the trellis 

– Edges have transition probabilities 

– Nodes have output or observation probabilities 

• They provide the probability of the observed input 

• The output probability may be a Gaussian 

– The goal is to find the template with highest probability of 

matching the input 

 

• Probability values as “scores” are also called likelihoods 
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Log Likelihoods 
• The problem with probabilities:  The probabilities of unrelated 

variables multiply 
– P(X,Y) = P(X)*P(Y) 

 

• Probabilities multiply along the path 

– Scores combines multiplicatively along a path 

–  score of a path = Product_over_nodes(score of node) * 
Product_over_edges(score of edge) 

 

• Use log probabilities as scores 

– Scores add as in DTW 

• Max instead of Min 

 

• May use negative log probabilities 

– Cost adds as in DTW 
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HMM = DTW with scores 

• Node and edge scores are log probabilities 

• Find maximum score path through trellis.. 

t=0 1 2 3 4 5 6 7 8 9 10 11 

Node score = 
log P(xt | j) 

Edge score (i,t->k,t+1) = log probability (Tij)  
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• A Hidden Markov Model consists of two components 

– A state/transition backbone that specifies how many states there are, and how 

they can follow one another 

– A set of probability distributions, one for each state 

Hidden Markov Models 

• This can be factored into two separate probabilistic entities 

– A probabilistic Markov chain with states and transitions 

– A set of data probability distributions, associated with the states 

Markov chain 

Data distributions 



Basic Structural Questions for HMM 

• What is the structure like? 

– What transitions are allowed 

– How many states? 

 
 

 

• What are the probability distributions 

associated with states? 

72 

Markov chain 

Data distributions 
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Determining the Number of  States 

• The correct number of states for any word? 

– We do not know, really 

 

– Ideally there should be at least one state for each “basic 

sound” within the word 

• Otherwise widely differing sounds may be collapsed into one state 

– For efficiency, the number of states should the minimum 

needed to achieve the desired level of recognition accuracy 

 

– These two are conflicting requirements, usually solved by 

making some educated guesses 
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Determining the Number of  States 

• For small vocabularies, it is possible to examine 
each word in detail and arrive at reasonable 
numbers: 

 

 

 

• For larger vocabularies, we may be forced to rely on 
some ad hoc principles 
– E.g. proportional to the number of letters in the word 

• Works better for some languages than others 

• Spanish,  Japanese (Katakana/Hiragana), Indian languages.. 

 

S O ME TH I NG 



What about the transition structure 

• Speech is a left to right process 

– With a deterministic structure to any word 

• Prespecified set of sounds in prespecified order 

– Although some sounds may occasionally be skipped 

 

• This suggests the following kind of structure 

 
 

 

• The Bakis topology 
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Markov chain 
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The Transition Probabilities? 

T4NEW T1NEW 

T2NEW 

T3NEW 

• Nk,i is the number of vectors in the ith  segment 

(state) of the kth training sequence 

 

• Nk,i,j is the number of vectors in the ith segment 

(state) of the kth training sequence that were 

followed by vectors from the jth segment (state) 

 
,

,,






k ik

k jik

ij
N

N
P

• Transition probabilities are just the probability of 

making transitions 
 

• As before, can be obtained by simple counting 



Basic Structural Questions for HMM 

• What is the structure like? 

– What transitions are allowed 

– How many states? 

 
 

 

• What are the probability distributions 

associated with states? 
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Markov chain 

Data distributions 



State Output Distributions 

• The state output distribution for 

any state is the distribution of all 

vectors associated with that state 

• It is the distribution of all vectors 

validly associated with the state 

• From all potential instances of the 

word 

• Not just the training (template) 

recordings 

• We have implicitly assumed this 

to be  Gaussian so far 
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The State Output Distribution 

• The state output distribution is a probability distribution associated with each HMM 
state 

– The negative log of the probability of any vector as given by this distribution would be the node 
cost in DTW 

• The state output probability distribution could be any distribution at all 

• We have assumed so far that state output distributions are Gaussian 

 

 

 

 

 

• More generically, we can assume it to be a mixture of Gaussians 
 

 

 

 

 

• More on this later  

,

,

2

,2

2

( )
( ) log( ( | )) 0.5 log(2 ) 0.5j l

j l

l j l

j

l l

x m
d v P x j s

s


    

( ) log( ( | ))jd v P x j 
, ,

, ,

2

, ,

22

( )
( | ) exp 0.5

2 j k l
j k l

l j k lk

k l

l

x mw
P x j

ss

 
  

 
 

 


Node cost for 
DTW (note change 
in notation) 
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• We have seen how to compute all probability terms for this 
structure 

 

• Sufficient information to compute all terms in a trellis 

The complete package 

Pij or log Pij 
P(x|j) or log P(x|j) 



We continue in the next class.. 
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