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Continuous speech recognition 

• Compose a graph representing all possible word 
sequences 

• Embed word HMMs in graph to form a “language” 
HMM 

• Viterbi decode over the language HMM 
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What about free-form speech 

• Graph is non-trivial 
• Must express all sentences in the universe 

– With appropriate probabilities factored in 
– Can we simplify/ 

the term cepstrum was introduced by Bogert et al and has come to be  

accepted terminology for the 

inverse Fourier transform of the logarithm of the power spectrum  

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper  

with the unusual title  

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance  

Cross Cepstrum and Saphe Cracking 

they observed that the logarithm of the power spectrum of a signal containing an  

echo has an additive  

periodic component due to the echo and thus the Fourier transform of the 

logarithm of the power  

spectrum should exhibit a peak at the echo delay  

they called this function the cepstrum 

interchanging letters in the word spectrum because  

in general, we find ourselves operating on the frequency side in ways customary  

on the time side and vice versa 

Bogert et al went on to define an extensive vocabulary to describe this new  

signal processing technique however only the term cepstrum has been widely used 

the transformation of a signal into its cepstrum is a homomorphic transformation 

and the concept of the cepstrum is a fundamental part of the theory of homomorphic  

systems for processing signals that have been combined by convolution 
<s> </s> 

Begin sentence marker End sentence marker 



The Bayes classifier for speech recognition 

• The Bayes classification rule for speech recognition: 

 

 

• P(X | w1, w2, …) =  likelihood that speaking the word sequence w1, 

w2 … could result in the data (feature vector sequence) X 
 

• P(w1, w2 … ) measures the probability that a person might actually 

utter the word sequence w1, w2 …. 

– This will be 0 for impossible word sequences 
 

• In theory, the probability term on the right hand side of the 

equation must be computed for every possible word sequence 
 

• In practice this is often impossible 

– There are infinite word sequences 
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Acoustic model 
For HMM-based systems 
this is an HMM 

Lanugage model 

Speech recognition system solves 

The Bayes classifier for speech recognition 



• There will be one path for every possible word sequence 
• A priori probabilitiy for a word sequence can be applied anywhere along 

the path representing that word sequence. 
• It is the structure and size of this graph that determines the feasibility of 

the recognition task  

The complete language graph 

. . . . . . . 

the term cepstrum was introduced by Bogert et al and has come to be  

accepted terminology for the 

inverse Fourier transform of the logarithm of the power spectrum  

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper  

with the unusual title  

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance  

Cross Cepstrum and Saphe Cracking 

they observed that the logarithm of the power spectrum of a signal containing an  

echo has an additive  

periodic component due to the echo and thus the Fourier transform of the 

logarithm of the power  

spectrum should exhibit a peak at the echo delay  

they called this function the cepstrum 

interchanging letters in the word spectrum because  

in general, we find ourselves operating on the frequency side in ways customary  

on the time side and vice versa 

Bogert et al went on to define an extensive vocabulary to describe this new  

signal processing technique however only the term cepstrum has been widely used 

the transformation of a signal into its cepstrum is a homomorphic transformation 

and the concept of the cepstrum is a fundamental part of the theory of homomorphic  

systems for processing signals that have been combined by convolution 
<s> </s> 

Begin sentence marker End sentence marker 



• A factored representation of a priori probability of a word sequence 
    P(<s> word1 word2 word3 word4…</s>) =  

P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)… 
 

• This is a left-to-right factorization of the probability 
– The probability of a word assumed dependent only on the words preceding it 

– This probability model for word sequences is as accurate as the earlier 
whole-word-sequence model, in theory 

 

• It has the advantage that the probabilities of words are applied left 
to right – this is perfect for speech recognition 

 

• P(word1 word2 word3 word4 … ) is incrementally obtained : 

A left-to-right model for the langauge 

word1 
word1 word2 
word1 word2 word3 
word1 word2 word3 word4 
….. 



• A priori probabilities for word sequences are spread through the graph 
– They are applied on every edge 

• This is a much more compact representation of the language than the 
full graph shown earlier 
– But is still infinitely large in size 

The language as a tree 

sing 

song 

sing 

song 

sing 

song 

<s> 

sing 

song 

sing 

song 

sing 

song 

sing 

song 

</s> 

Assuming a two-word 
vocabulary: “sing” and 
“song” 
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• The N-gram assumption 

  P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1) 
 

• The probability of a word is assumed to be dependent 

only on the past N-1 words 

– For a 4-gram model,  the probability that “two times two 

is” is followed by “four” is assumed identical to the 

probability “seven times two is” is followed by “four”. 
 

• This is not such a poor assumption 

– Surprisingly, the words we speak (or write) at any time 

are largely dependent on the previous 3-4 words. 

The N-gram model 



• An N-gram language model is a generative model 

– One can generate word sequences randomly from it 
 

• In a good generative model, randomly generated word 

sequences should be similar to word sequences that occur 

naturally in the language 

– Word sequences that are more common in the language should be 

generated more frequently 
 

• Is an N-gram language model a good model? 

– Does it generate reasonable sentences 
 

• Thought exercise: how would you generate word sequences 

from an N-gram LM ? 

– Clue: N-gram LMs include the probability of a sentence end marker  

The validity of  the N-gram assumption 



• 1-gram LM: 
– The and the figure a of interval compared and  
– Involved the a at if states next a a the of producing of too 
– In out the digits right the the to of or parameters endpoint to right 
– Finding likelihood with find a we see values distribution can the a is 

 

• 2-gram LM: 
– Give an indication of figure shows the source and human 
– Process of most papers deal with an HMM based on the next 
– Eight hundred and other data show that in order for simplicity 
– From this paper we observe that is not a technique applies to model 

 

• 3-gram LM: 
– Because in the next experiment shows that a statistical model 
– Models have recently been shown that a small amount 
– Finding an upper bound on the data on the other experiments have 

been 
– Exact Hessian is not used in the distribution with the sample values   

Sentences generated with N-gram LMs 



• N-gram models are reasonably good models for the language at 
higher N 

– As N increases, they become better models 
 

• For lower N (N=1, N=2), they are not so good as generative models 
 

• Nevertheless, they are quite effective for analyzing the relative 
validity of word sequences 

– Which of a given set of word sequences is more likely to be valid 

– They usually assign higher probabilities to plausible word sequences 
than to implausible ones 

 

• This, and the fact that they are left-to-right (Markov) models 
makes them very popular in speech recognition 

– They have found to be the most effective language models for large 
vocabulary speech recognition 

N-gram LMs 



• By restricting the order of the N-gram LM, the infinite tree 
for the language can be collapsed into finite-sized graphs. 

• Best explained with an example 

• Consider a simple 2-word example with the words “Sing” 
and “Song” 

• Word sequences are 
– Sing 

– Sing sing 

– Sing song sing 

– Sing sing song 

– Song 

– Song sing sing sing  sing sing song 

– …. 

• There are  infinite possible sequences 

N-gram LMs and compact graphs 
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• The structure is recursive and can be collapsed 

The two-word example as a full tree with a unigram LM 
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The two-word example with a unigram LM 
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 The structure is recursive and can be collapsed 

The two-word example as a full tree with a bigram LM 
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The two-word example with a bigram LM 
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 The structure is recursive and can be collapsed 

The two-word example as a full tree with a trigram LM 
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the 

<s> </s> 
rock 

star 

P(</s> | <s>) 

P(star | </s>) 

P(the | <s> the) 

This is wrong! This would apply the probability 
P(the | <s> the) to instances of “the the the” 
(for which the correct probability value is 
P(the | the the) 

• Three word vocabulary “the”, “rock”, “star” 
– The graph initially begins with bigrams of <s> 

– There are edges from every node to “</s>”, that are not shown 

– Trigrams of “<s> the”.. 
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P(the | </s>) 

P(rock | </s>) 

Trigram Representations 



the 

– Trigrams for all “<s> word” sequences 
• A new instance of every word is required to ensure that the 

two preceding symbols are “<s> word” 

<s> 
rock 

star 

the 

rock 

star 

P(the | <s> the) 

P(rock | <s> the) 

the 

rock 

star 

the 

rock 

star 

P(the | <s> star) 

P(rock | <s> star) 

</s> 

P(star | <s> the) 

P(star | <s> star) 

Trigram Representations 
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This always represents a partial 

sequence ending with “rock star” 

Any edge coming out of this  

instance of STAR will have the 

word pair context “ROCK STAR” 

– Each copy of a word in the second level represents a specific 
set of two terminal words in a partial word sequence 

P(star | star  rock) 

P(star | rock rock) 

P(star | the rock) 
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Trigram Representations 



the 

<s> 
rock 

star 

the 

rock 

star 

the 

rock 

star 

the 

rock 

star 

Edges coming out of this 
wrongly 
connected STAR could have 
word 
pair contexts that are either  
“THE STAR” or “ROCK STAR”. 
This is amibiguous. A word 
cannot have incoming edges 
from two or more different 
words 

Trigram Representations: Error 



• The logic can be extended: 

• A trigram decoding structure for a vocabulary of D 
words needs D word instances at the first level and D2 
word instances at the second level 

– Total of D(D+1) word models must be instantiated 

– Other, more expensive structures are also possible 
 

• An N-gram decoding structure will need 

– D + D2 +D3… DN-1  word instances 

– Arcs must be incorporated such that the exit from a word 
instance in the (N-1)th level always represents a word 
sequence with the same trailing sequence of  N-1 words 

Generic N-gram Representations 



ESTIMATING N-gram PROBABILITIES 

33 



• N-gram probabilities must be estimated from data 

• Probabilities can be estimated simply by counting words in training text 

• E.g. the training corpus has 1000 words in 50 sentences, of which 400 are 
“sing” and 600 are “song” 

– count(sing)=400; count(song)=600; count(</s>)=50 

– There are a total of 1050 tokens, including the 50 “end-of-sentence” markers 

• UNIGRAM MODEL:  

– P(sing) = 400/1050;  P(song) = 600/1050;  P(</s>) = 50/1050 

• BIGRAM MODEL: finer counting is needed. For example: 

– 30 sentences begin with sing, 20 with song 

• We have 50 counts of <s> 

• P(sing | <s>) = 30/50;   P(song|<s>) = 20/50 

– 10 sentences end with sing, 40 with song 

• P(</s> | sing) = 10/400;  P(</s>|song) = 40/600 

– 300 instances of sing are followed by sing, 90 are followed by song 

• P(sing | sing) = 300/400; P(song | sing) = 90/400; 

– 500 instances of song are followed by song, 60 by sing 

• P(song | song) = 500/600;  P(sing|song) = 60/600 

Estimating N-gram Probabilities 



• Note that “</s>” is considered to be equivalent to a word. The 
probability for “</s>” are counted exactly like that of other words 

 

• For N-gram probabilities, we count word sequences of length N 

– E.g. we count word sequences of length 2 for bigram LMs, and word 
sequences of length 3 for trigram LMs 

 

• For N-gram probabilities of order N>1, we also count word sequences 
that include the word beginning and word end markers 

– E.g. counts of sequences of the kind “<s> wa wb” and “wc wd </s>” 

 

• The N-gram probability of a word wd given a context “wa wb wc” is 
computed as 

– P(wd | wa wb wc)  =  Count(wa wb wc wd) / Count(wa wb wc) 

– For unigram probabilities the denominator is simply the count of all word 
tokens (except the beginning of sentence marker <s>).  

– We do not explicitly compute the probability of P(<s>). 

Estimating N-gram Probabilities 



• Such direct estimation is however not possible in all cases 
 

• E.g: 1000 word vocablary  1001*1001 possible bigrams  
– including the <s> and </s> markers 

 

• Unlikely to encounter all 1002001 word pairs in any given 
training corpus 
– i.e. many of the corresponding bigrams will have 0 count 

 

• However, these unseen bigrams may occur in test data 
– E.g., we may never see “sing sing” in the training corpus 

– P(sing | sing) will be estimated as 0 

– If a speaker says “sing sing” as part of any word sequence, at least 
the “sing sing” portion of it will never be recognized 

 

• The problem gets worse as N increases 
– For a 1000 word vocabulary there are ~109 possible trigrams 

Estimating N-gram Probabilities 



• We must assign a small non-zero probability to all N-grams 
that were never seen in the training data 

• However, this means we will have to reduce the 
probability of other terms, to compensate 

– Example:   We see 100 instances of sing, 90 of which are 
followed by sing, and 10 by </s>  

– The bigram probabilities computed directly are  
P(sing|sing) = 90/100, P(<s/>|sing) = 10/100 

– We never observed sing followed by song. 

– Let us attribute a small probability e > 0 to P(song|sing) 

– But 90/100 + 10/100 + e > 1.0 

– To compensate we subtract a value a from P(sing|sing) and 
some value b from P(</s>|sing) such that 

• P(sing | sing) = 90 / 100 – a 

• P(</s> | sing) = 10 / 100 – b 

• P(sing | sing) + P(</s> | sing) + P(song | sing) = 90/100-a + 10/100-b + e =1 

Discounting 



• The reduction of the probability estimates for seen N-grams, in order to 
assign non-zero probabilities to unseen N-grams is called discounting 
– The process of modifying probability estimates to be more generalizable is 

called smoothing 
 

• Discounting and smoothing techniques: 
– Absolute discounting 

– Jelinek-Mercer smoothing 

– Good Turing discounting 

– Other methods 
 

• All discounting techniques follow the same basic principle: they modify 
the counts of N-grams that are seen in the training data 
– The modification usually reduces the counts of seen N-grams 

– The withdrawn counts are reallocated to unseen N-grams 
 

• Probabilities of seen N-grams are computed from the modified counts 
– The resulting N-gram probabilities are discounted probability estimates 

– Non-zero probability estimates are derived for unseen N-grams, from the 
counts that are reallocated to unseen N-grams 

Discounting and Smoothing 



• Subtract a constant from all counts 

• E.g., we have a vocabulary of K words, w1, w2,w3…wK 

• Unigram: 

– Count of word wi = C(i) 

– Count of end-of-sentence markers (</s>) = Cend 

– Total count Ctotal = SiC(i) + Cend 

• Discounted Unigram Counts 

– Cdiscount(i) = C(i) – e 

– Cdiscountend = Cend – e 

• Discounted probability for seen words 

– P(i) = Cdiscount(i) / Ctotal 

– Note that the denominator is the total of the undiscounted counts 

• If Ko words are seen in the training corpus, K – Ko words are unseen 

– A total count of Koxe, representing a probability Koxe / Ctotal remains 

unaccounted for 

– This is distributed among the K – Ko words that were never seen in training 

•  We will discuss how this distribution is performed later 

Absolute Discounting 



• Bigrams:  We now have counts of the kind 

– Contexts: Count(w1), Count(w2), … , Count(<s>) 

• Note <s> is also counted; but it is used only as a context 

• Context does not incoroporate </s> 

– Word pairs:  Count (<s> w1), Count(<s>,w2),…,Count(<s> </s>),…, 

 Count(w1 w1), …,Count(w1 </s>) … Count(wK wK), Count(wK </s>) 

• Word pairs ending in </s> are also counted 
 

• Discounted counts: 

– DiscountedCount(wi wj) = Count(wi wj) – e 
 

• Discounted probability:   

– P(wj | wi) = DiscountedCount(wi wj) / Count(wi) 

– Note that the discounted count is used only in the numerator 
 

• For each context wi, the probability Ko(wi)xe / Count(wi) is left over 

– Ko(wi) is the number of words that were seen following wi  in the training corpus 

– Ko(wi)xe / Count(wi) will be distributed over bigrams P(wj | wi), for words wj such 

that the word pair wi wj was never seen in the training data 

Absolute Discounting: Higher order N-grams 



• Trigrams:  Word triplets and word pair contexts are counted 

– Context Counts: Count(<s> w1), Count(<s> w2), … 

– Word triplets:  Count (<s> w1w1),…, Count(wK wK, </s>) 
 

• DiscountedCount(wi wj wk) = Count(wi wj wk) – e 
 

• Trigram probabilities are computed as the ratio of discounted word triplet 

counts and undiscounted context counts 

• The same procedure can be extended to estimate higher-order N-grams 
 

• The value of e: The most common value for e is 1 

– However, when the training text is small, this can lead to allocation of a 

disproportionately large fraction of the probability to unseen events 

– In these cases, e is set to be smaller than 1.0, e.g. 0.5 or 0.1 
 

• The optimal value of e can also be derived from data 

– Via K-fold cross validation 

 

Absolute Discounting 



• Split training data into K equal parts 
 

• Create K different groupings of the K parts by holding out one of the K 
parts and merging the rest of the K-1 parts together.  

– The held out part is a validation set, and the merged parts form a training set 

– This gives us K different partitions of the training data into training and 
validation sets 

 

• For several values of e 

– Compute K different language models with each of the K training sets 

– Compute the total probability Pvalidation(i) of the ith validation set on the 
LM trained from the ith training set 

– Compute the total probability  
Pvalidatione = Pvalidation(1)*Pvalidation(2)*..*Pvalidation(K) 

 

• Select the e for which Pvalidation e is maximum 
 

• Retrain the LM using the entire training data, using the chosen value of e 

K-fold cross validation to estimate e 



• Returns probability of an N-gram as a weighted 

combination of maximum likelihood N-gram and smoothed 

N-1 gram probabilities 

 
 

 

 

• Psmooth(word | wa wb wc..) is the N-gram probability used during 

recognition 

– The higher order (N-gram) term on the right hand side,  

PML(word | wa wb wc..) is a maximum likelihood (counting-based) estimate 

– The lower order ((N-1)-gram term ) Psmooth(word | wb wc..) is recursively 

obtained by interpolation between the ML estimate PML(word | wb wc..) and 

the smoothed estimate for the (N-2)-gram Psmooth(word | wc..) 

– All l values lie between 0 and 1 

– Unigram probabilities are interpolated with a uniform probability distribution 

 ...)  |(...)  (...)  |( wcwbwawordPwcwbwawcwbwawordP MLsmooth l

  ...)  |(...)  (0.1 wcwbwordPwcwbwa smoothl

Jelinek Mercer smoothing 



 

 

 

 

 

 

• The l values must be estimated using held-out data 
– A combination of K-fold cross validation and the expectation 

maximization algorithms must be used 

– We will not present the details of the learning algorithm in this talk 

– Often, an arbitrarily chosen value of l, such as l = 0.5 is also very 
effective 

 ...)  |(...)  (...)  |( wcwbwawordPwcwbwawcwbwawordP MLsmooth l

  ...)  |(...)  (0.1 wcwbwordPwcwbwa smoothl

Jelinek Mercer smoothing 



• Zipf’s law: The number of events that occur often is small, 
but the number of events that occur very rarely is very 
large. 

 

• If n represents the number of times an event occurs in a 
unit interval, the number of events that occur n times per 
unit time is proportional to 1/na, where a is greater than 1 

– George Kingsley Zipf originally postulated that a = 1.  

– Later studies have shown that a is 1 + e, where e is slightly 
greater than 0 

 

• Zipf’s law is true for words in a language: the probability of 
occurrence of words starts high and tapers off. A few 
words occur very often while many others occur rarely. 

Good Turing discounting: Zipf ’s law 



• A plot of the count of counts of words in a training corpus 
typically looks like this: 

 In keeping with Zipf’s law, the number of words that occur n 
times in the training corpus is typically more than the 
number of words that occur n+1 times 

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Count of counts curve (Zipf’s law) 
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 Black line: Count of counts 
 Black line value at N = No. of words that occur N times 

 Red line:   Total probability mass of all events with that count 
 Red line value at 1 = (No. of words that occur once) / Total words 
 Red line value at 2 = 2  * (No. of words that occur twice) / Total  words 
 Red line value at N = N * (No. of words that occur N times) / Total words 
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 Red Line 
 P(K) =  K * NK / N 

 K = No. of times word was seen 
 NK is no. of words seen K times 
 N: Total words 

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14 
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 In keeping with Zipf’s law, the number of words that occur n times in the 
training corpus is typically more than the number of words that occur 
n+1 times 
 The total probability mass of words that occur n times falls slowly 
 Surprisingly, the total probability mass of rare words is greater than the total 

probability mass of common words, because of the large number of rare 
words 

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14 
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Good Turing Discounting 



 Good Turing discounting reallocates probabilities 
 The total probability mass of all words that occurred n times is 

assigned to words that occurred n-1 times 
 The total probability mass of words that occurred once is reallocated 

to words that were never observed in training 
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• Assign probability mass of  events seen 2 times to events 
seen once. 
– Before discounting:  P(word seen once) =  1 / N 

• N = total words 

– After discounting: 
P(word seen once) = (2*N2 / N) / N1 

• N2 is no. of words seen twice 

• N1 is no. of words seen once 
 

– P(word seen once) = (2*N2 / N1) / N 
 

• Discounted count for words seen once is:  
– N1,discounted  =  (2*N2 / N1) 

– Modified probability:  Use discounted count as the count for the 
word 

Good Turing Discounting 



 The probability mass curve cannot simply be shifted left directly due to 
two potential problems 

 

 Directly shifting the probability mass curve assigns 0 probability to the 
most frequently occurring words 
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Good Turing Discounting 



 

• The count of counts curve is often not continuous 

– We may have words that occurred L times, and words that occurred L+2 
times, but none that ocurred L+1 times 

– By simply reassigning probability masses backward, words that occurred L 
times are assigned the total probability of words that ocurred L+1 times = 0! 
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No words observed with this count. 
Total probability mass here is 0. 

L+1 L 

Discounted probabilities (after left shift) 
Look like this! 

Good Turing Discounting 



 The count of counts curve is smoothed and extrapolated 
 Smoothing fills in “holes” – intermediate counts for which the curve went to 0 
 Smoothing may also vary the counts of events that were observed 
 Extrapolation extends the curve to one step beyond the maximum count 

observed in the data 

 Smoothing and extrapolation can be done by linear interpolation and 
extrapolation, or by fitting polynomials or splines 

 Probability masses are computed from the smoothed count-of-counts and 
reassigned 
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Smoothed and extrapolated count of counts curve 

Good Turing Discounting 



• Step 1:  Compute count-of-counts curve 
– Let r(i) be the number of words that occurred i times 

 
• Step 2: Smooth and extend count-of-count curve 

– Let r’(i)  be the smoothed count of the number of words that occurred i times.  

 
• The total smoothed count of all words that occurred i times is r’(i) * i.  

– We operate entirely with the smoothed counts from here on 
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Good Turing Discounting 



• Step 3: Reassign total smoothed counts r’(i)*i  to words that 
occurred i-1 times.  
– reassignedcount(i-1) = r’(i)*i / r’(i-1) 

• Step 4: Compute modified total count from smoothed counts 
– totalreassignedcount = Si smoothedprobabilitymass(i) 

• Step 5: A word w with count i is assigned probability  
 P(w| context) = reassignedcount(i) / totalreassignedcount 
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Good Turing Discounting 



• Step 6: Compute a probability for unseen terms!!!! 
 

• A probability mass Pleftover = r’(1)*N1 / totalreassignedcount  is left over 
– Reminder: r’(1) is the smoothed count of words that occur once 

– The left-over probability mass is reassigned to words that were not seen in the 
training corpus 

 

• P(any unseen word) =  Pleftover / Nunseen  
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Good Turing Discounting 



• UNIGRAMS: 

– The count-of-counts curve is derived by counting the words (including </s>) 
in the training corpus 

– The count-of-counts curve is smoothed and extrapolated 

– Word probabilities are computed for observed words are computed from the 
smoothed, reassigned counts 

– The left-over probability is reassigned to unseen words 
 

• BIGRAMS: 

– For each word context W, (where W can also be <s>), the same procedure 
given above is followed: the count-of-counts for all words that occur 
immediately after W is obtained, smoothed and extrapolated, and bigram 
probabilities for words seen after W are computed. 

– The left-over probability is reassigned to the bigram probabilities of words 
that were never seen following W in the training corpus 

 

• Higher order N-grams: The same procedure is followed for every word 
context W1 W2… WN-1 

Good Turing estimation of  LM probabilities 



• All discounting techniques result in a some left-over 
probability to reassign to unseen words and N-grams 

 

• For unigrams, this probability is uniformly distributed over 
all unseen words 

– The vocabulary for the LM must be prespecified 

– The probability will be reassigned uniformly to words from this 
vocabulary that were not seen in the training corpus 

 

• For higher-order N-grams, the reassignment is done 
differently 

– Based on lower-order N-gram, i.e. (N-1)-gram probabilities 

– The process by which probabilities for unseen N-grams is 
computed from (N-1)-gram probabilities is referred to as 
“backoff” 

Reassigning left-over probability to unseen words 



• UNIGRAMS: A probability mass Pleftover = r’(1)*N1 / totalreassignedcount  is left over and 
distributed uniformly over unseen words 
– P(any unseen word) =  Pleftover / Nunseen  

 

• BIGRAMS:  We only count over all words in a particular context 
– E.g. all words that followed word “w3” 
– We count words and smooth word counts only over this set (e.g. words that followed w3) 
– We can use the same discounting principle as above to compute probabilities of unseen 

bigrams of w3 (i.e bigram probabilities that a word will follow w3, although it was never 
observed to follow w3 in the training set) 

– CAN WE DO BETTER THAN THIS? 
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Dealing with unseen Ngrams 



• Example:  Words  w5 and w6 were never observed to follow w3 in 
the training data 

– E.g. we never saw “dog” or “bear” follow the word “the” 

 

• Backoff assumption:  Relative frequencies of w5 and w6 will be the 
same in the context of w3 (bigram) as they are in the language in 
general (Unigrams) 

– If the number of times we saw “dog” in the entire training corpus was 
10x the no. of times we saw “bear”, then we assume that the number of 
times we will see “dog” after “the” is also 10x the no. of times we will 
see “bear” after “the” 

 

• Generalizing:   N-gram probabilities of words that are never seen (in 
the training data) in the given N-gram context follow the same 
distribution pattern observed in the N-1 gram context 

 

Unseen N-grams :  Backoff 



• Explanation with a bigram example 

 Unigram probabilities are computed and known before bigram 
probabilities are computed 

 Bigrams for P(w1 | w3), P(w2 | w3) and P(w3 | w3) were computed from 
discounted counts. w4, w5, w6 and </s> were never seen after w3 in the 
training corpus 
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N-gram LM : Backoff 

Seen in the context of w3 



 The probabilities P(w4|w3),  P(w5|w3), P(w6|w3) and P(</s>|w3) are assumed 
to follow the same pattern as the unigram probabilities P(w4), P(w5), P(w6) and 
P(</s>) 

 They must, however be scaled such that  
P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0 

 The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4) 
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• Explanation with a bigram example 

N-gram LM : Backoff 



 P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0 
 The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4) 

 

 The scale term is called the backoff term. It is specific to w3 
 Scale = backoff(w3) 
 Specificity is because the various terms used to compute scale are specific to w3 

w1 w2 w3 w4 w5 w6 </s> 

U
n

ig
ra

m
 

w1 w2 w3 w4 w5 w6 </s> 

B
ig

ra
m

(w
3

) 

)/()()()(

)|()|()|(1
)(

654

333231
3






sPwPwPwP

wwPwwPwwP
wbackoff

N-gram LM : Backoff 



• Assumption: When estimating N-gram probabilities, we already have access to all 
N-1 gram probabilities 

 

• Let w1 … wK be the words in the vocabulary (includes </s>) 
 

• Let WN-1  be the context for which we are trying to estimate N-gram probabilities 
– Will be some sequence of N-1 words (for N-gram probabilities) 

– i.e  we wish to compute all probabilities P(word | WN-1) 

– E.g W3 = “wa wb wc”.  We wish to compute all 4-gram probabilities P(word | wa wb wc) 
 

Katz  Backoff! 
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N-gram LM : Backoff  from N-gram to N-1 gram 



• Step 1:  Compute leftover probability mass for unseen N-grams (of the form 
P(word| WN-1)) using Good Turing discounting 

– Pleftover(WN-1) – this is specific to context WN-1 as we are only counting words that 
follow word sequence WN-1 

 

• Step 2:  Compute backoff weight 
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 Note WN-2 in the denominator.  If WN-1 is “wa wb wc”, WN-2 is “wb wc”  
 The trailing N-2 words only 
 We already have N-1 gram probabilities of the form P(w | WN-2) 

 

 Step 3:  We can now compute N-gram probabilities for unseen Ngrams 
 
 
 Actually, this is done “on demand” – there’s no need to store them explicitly. 
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N-gram LM : Backoff  from N-gram to N-1 gram 



• In order to estimate the backoff weight needed to compute 
N-gram probabilities for unseen N-grams, the corresponding N-1 
grams are required (as in the following 4-gram example) 

 

 

– The corresponding N-1 grams might also not have been seen in the 
training data 

 

• If  the backoff N-1 grams are also unseen, they must in turn be 
computed by backing off to N-2 grams 

– The backoff weight for the unseen N-1 gram must also be known 

– i.e. it must also have been computed already 
 

• All lower order N-gram parameters (including probabilities and 
backoff weights) must be computed before higher-order N-gram 
parameters can be estimated 
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Backoff  is recursive 



• First compute Unigrams 

– Count words, perform discounting, estimate discounted probabilities for all seen 
words 

– Uniformly distribute the left-over probability over unseen unigrams 
 

• Next, compute bigrams. For each word W seen in the training data: 

– Count words that follow that W. Estimate discounted probabilities P(word | W) for 
all words that were seen after W.  

– Compute the backoff weight b(W) for the context W. 

– The set of explicity estimated P(word | W) terms, and the backoff weight b(W) 
together permit us to compute all bigram probabilities of the kind: P(word | W) 

 

• Next, compute trigrams: For each word pair “wa wb” seen in the training data: 

– Count words that follow that “wa wb”. Estimate discounted probabilities 
P(word | wa wb) for all words that were seen after “wa wb”.  

– Compute the backoff weight b(wa wb) for the context “wa wb”. 

 

• The process can be continued to compute higher order N-gram probabilities. 

Learning backoff  N-gram models 



• Unigram probabilities for all words in the vocabulary 

• Backoff weights for all words in the vocabulary 

• Bigram probabilities for some, but not all bigrams 

– i.e. for all bigrams that were seen in the training data 

• If N>2, then: backoff weights for all seen word pairs 

– If the word pair was never seen in the training corpus, it will not have 
a backoff weight. The backoff weight for all word pairs that were not 
seen in the training corpus is implicitly set to 1 

• … 

• N-gram probabilities for some, but not all N-grams 

– N-grams seen in training data 

• Note that backoff weights are not required for N-length word 
sequences in an N-gram LM 

– Since backoff weights for N-length word sequences are only useful to 
compute backed off N+1 gram probabilities 

Contents of  a completely trained N-gram backoff  model 



\1-grams: 
-1.2041 <UNK>  0.0000 
-1.2041 </s>  0.0000 
-1.2041 <s> -0.2730 
-0.4260 one -0.5283 
-1.2041 three -0.2730 
-0.4260 two -0.5283 
\2-grams: 
-0.1761 <s> one      0.0000 
-0.4771 one three    0.1761 
-0.3010 one two      0.3010 
-0.1761 three two    0.0000 
-0.3010 two one      0.3010 
-0.4771 two three    0.1761 
\3-grams: 
-0.3010 <s> one two  
-0.3010 one three two  
-0.4771 one two one  
-0.4771 one two three  
-0.3010 three two one  
-0.4771 two one three  
-0.4771 two one two  
-0.3010 two three two  

Backoff  trigram LM:  An example 



• To retrieve a probability P(word | wa wb wc …) 

– How would a function written for returning N-gram probabilities work? 
 

• Look for the probability P(word | wa wb wc …) in the LM 

– If it is explicitly stored, return it 
 

• If P(word | wa wb wc …)  is not explicitly stored in the LM retrive it 
by backoff to lower order probabilities: 

– Retrieve backoff weight backoff(wa wb wc..) for word sequence wa wb wc 

• If it is stored in the LM, return it 

• Otherwise return 1 

– Retrieve P(word | wb wc …) from the LM 

• If P(word | wb wc .. ) is not explicitly stored in the LM, derive it backing off 

• This will be a recursive procedure 

– Return P(word | wb wc …)  * backoff(wa wb wc..) 

Obtaining N-gram probability from backoff  N-gram LM 



Toolkits for training Ngram LMs 

• CMU-Cambridge LM Toolkit 

• SRI LM Toolkit 

• MSR LM toolkit 

– Good for large vocabularies 

• Many many others.. 

• .. 

 

• Your own toolkit here 



Contents of textfile 

<s>  the term cepstrum was introduced by Bogert et al and has come to be  

accepted terminology for the 
inverse Fourier transform of the logarithm of the power spectrum  
of a signal in nineteen sixty three Bogert Healy and Tukey published a paper  
with the unusual title  
The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance  
Cross Cepstrum and Saphe Cracking 
they observed that the logarithm of the power spectrum of a signal containing an  
echo has an additive  
periodic component due to the echo and thus the Fourier transform of the 
 logarithm of the power  
spectrum should exhibit a peak at the echo delay  
they called this function the cepstrum 
interchanging letters in the word spectrum because  
in general, we find ourselves operating on the frequency side in ways customary  
on the time side and vice versa 
Bogert et al went on to define an extensive vocabulary to describe this new  
signal processing technique however only the term cepstrum has been widely used 
The transformation of a signal into its cepstrum is a homomorphic transformation 
and the concept of the cepstrum is a fundamental part of the theory of homomorphic  
systems for processing signals that have been combined by convolution 
</s> 

vocabulary 

<s>   
</s> 
the  
term  
cepstrum  
was  
introduced  
by  
Bogert  
et  
al  
and  
has  
come  
to  
be  
accepted  
terminology  
for 
inverse  
Fourier  
transform  
of  
logarithm  
Power 
. . . 

Contents of contextfile 
<s> 

Training a language model using CMU-Cambridge LM toolkit 



To train a bigram LM (n=2): 
$bin/text2idngram -vocab vocabulary  -n 2 -write_ascii < textfile > idngm.tempfile 
 
$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM  -context contextfile  -
absolute -ascii_input -n 2 (optional: -cutoffs 0 0 or –cutoffs 1 1 ….) 
OR 
$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM  -context contextfile  -
good_turing -ascii_input -n 2 
…. 
 

Training a language model using CMU-Cambridge LM toolkit 



• For recognition, the N-
gram LM can be 
represented as a finite 
state graph 

– Recognition can be 
performed exactly as 
we would perform 
recognition with 
grammars 

 

• Problem: This graph can 
get enormously large 

– There is an arc for 
every single N-gram 
probability! 

– Also for every single N-
1, N-2 .. 1-gram 
probabilities 
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Representing N-gram LMs as graphs 



• In a typical N-gram LM,  the vast majority of bigrams, trigrams 
(and higher-order N-grams) are computed by backoff 

– They are not seen in training data, however large 

 

 

• The backed-off probability for an N-gram is obtained from the N-1 
gram! 

 

• So for N-grams computed by backoff  it should be sufficient to 
store only the N-1 gram in the graph 

– Only have arcs for P(w | wb wc);  not necessary to have explicit arcs 
for P(w | wa wb wc) 

– This will reduce the size of the graph greatly 
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The representation is wasteful 



• N-Gram language models with back-off can 
be represented as finite state grammars 

– That explicitly account for backoff! 
 

• This also permits us to use grammar-based 
recognizers to perform recognition with 
Ngram LMs 

 

• There are a few precautions to take, however 

N-gram LM as FSGs: Accounting for backoff 



• \1-grams: 

-1.2041 <UNK>  0.0000 

-1.2041 </s>  0.0000 

-1.2041 <s> -0.2730 

-0.4260 one -0.5283 

-1.2041 three -0.2730 

-0.4260 two -0.5283 

 

• \2-grams: 

-0.1761 <s> one      0.0000 

-0.4771 one three    0.1761 

-0.3010 one two      0.3010 

-0.1761 three two    0.0000 

-0.3010 two one      0.3010 

-0.4771 two three    0.1761 

 

• \3-grams: 

-0.3010 <s> one two  

-0.3010 one three two  

-0.4771 one two one  

-0.4771 one two three  

-0.3010 three two one  

-0.4771 two one three  

-0.4771 two one two  

-0.3010 two three two  

N-gram to FSG conversion: Trigram LM 



• Note “EPSILON” Node for Unigram Probs 

 \1-grams: 
-1.2041 <UNK>  0.0000 

-1.2041 </s>  0.0000 

-1.2041 <s> -0.2730 

-0.4260 one -0.5283 

-1.2041 three -0.2730 

-0.4260 two -0.5283 

 

 \2-grams: 
-0.1761 <s> one      0.0000 

-0.4771 one three    0.1761 

-0.3010 one two      0.3010 

-0.1761 three two    0.0000 

-0.3010 two one      0.3010 

-0.4771 two three    0.1761 

 
 \3-grams: 
-0.3010 <s> one two  

-0.3010 one three two  

-0.4771 one two one  

-0.4771 one two three  

-0.3010 three two one  

-0.4771 two one three  

-0.4771 two one two  

-0.3010 two three two  

2  

3  

1  

3  

2  

1  

1  

3  unk  

e  

</s> 

<s> 2  

P(3) 
P(2|3) 

P(1|<s>) 

P(1 | 3 2) 

P(2 | 2 3) 

Note: The two-word history out of 
every node in the bigram word 
history level is unique  

UG word 
history level 

BG word 
history level 

Step 1: Add explicit N-grams 



• From any node representing a word  

history  “wa” (unigram) add BO arc to epsilon 

– With score Backoff(wa) 

• From any node representing a word history “wa wb” add a BO arc to 

wb 

– With score Backoff (wa wb) 

 \1-grams: 
-1.2041 <UNK>  0.0000 

-1.2041 </s>  0.0000 

-1.2041 <s> -0.2730 

-0.4260 one -0.5283 

-1.2041 three -0.2730 

-0.4260 two -0.5283 

 

 \2-grams: 
-0.1761 <s> one      0.0000 

-0.4771 one three    0.1761 

-0.3010 one two      0.3010 

-0.1761 three two    0.0000 

-0.3010 two one      0.3010 

-0.4771 two three    0.1761 

 
 \3-grams: 
-0.3010 <s> one two  

-0.3010 one three two  

-0.4771 one two one  

-0.4771 one two three  

-0.3010 three two one  

-0.4771 two one three  

-0.4771 two one two  

-0.3010 two three two  
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3 unk 

e (1) 

</s> 

<s> 2 

BO(3) 
BO(3 2) 

BO(2 3) 

BO(1) 

BO(1 3) 

Step 2: Add backoffs 



Ngram to FSG conversion: FSG 

2 (7) 

3 (8) 

1 (9) 

3 (10) 

2 (11) 

1 (12) 

1 (6) 

3 (4) unk (2) 

e (1) 

</s>(3) 

<s>(0) 

 Yellow ellipse is start node 
 Pink ellipse is “no gram” node 
 Blue ellipses are unigram nodes 
 Gray ellipses are bigram nodes 

2 (5) 

o Score of shortest path from any node to </s> is subsumed 

   into the termination score for that node. 

o The explicit probability link into </s> can then be removed 
- Yellow star represents termination score 

 red text represents 
   words 
 Green (parenthesized) 
  numbers are node numbers 



A Problem: Paths are Duplicated 
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o Explicit trigram paths also have backed off alternatives 

Explicit trigram path for trigram “three two one” 
 



Backoff  paths exist for explicit Ngrams 
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o Explicit trigram paths also have backed off alternatives 

Backoff trigram path for trigram “three two one” 
 



Delete “losing” edges 
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o  When the best backed off trigram path scores higher than the 

   explicit trigram path, the explicit trigram link can be removed 
 

o Renormalization of backoff scores will be required to ensure sum(prob)=1 

Deleted trigram link 
 



Delete “losing” edges 

2 (7) 
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o Explicit bigram links can also be similarly removed if 

   backed off score is higher than explicit link score 

o Backoff scores (yellow link scores) will have to be renormalized 

   for probabilities to add to 1. 

Deleted bigram link 
 



• Train HMMs for the acoustic model 

• Train N-gram LM with backoff from training data 

• Construct the Language graph, and from it the language 
HMM 

– Represent the Ngram language model structure as a compacted 
N-gram graph, as shown earlier 

– The graph must be dynamically constructed during recognition – 
it is usually too large to build statically 

– Probabilities on demand: Cannot explicitly store all K^N 
probabilities in the graph, and must be computed on the fly 

• K is the vocabulary size 

– Other, more compact structures, such as FSAs can also be used 
to represent the lanauge graph 

• later in the course 

• Recognize 

Overall procedure for recognition with an Ngram 

language model 


