Set Partitioning

John McDonough

Language Technologies Institute,
Machine Learning for Signal Processing Group,
Carnegie Mellon University

April 9, 2012

MLSP

Introduction

- In this lecture, we consider breadth first search (BFS) and depth first search (DFS).
- We will prove that BFS determines the shortest pass for unweighted graphs.
- We will also prove that DFS is useful for topologically sorting nodes.
- We also consider an algorithm for set partitioning that can also be used to minimize a weighted-finite state automaton.
- Finally, we will begin to consider an algorithm for weight pushing.
Coverage: Cormen, Leiserson, Rivest and Stein (2009); Aho, Hopcroft, Ullman (1974), Section 4.13.

Graph Searches

- The most basic operation on a graph is to search through it to discover all vertices.
- The vertices are assigned a color during the search:
- A node v that has not been previously discovered is white.
- A node v that has been discovered, but whose adjacency list has not been fully explored is gray.
- After the adjacency list of v has been fully explored, it is black.
- The distance $\mathrm{d}[v]$ of a node v is the number of edges traversed from the start node s in order to reach v.
- The predecessor $\pi[v]$ of a node v is the node from whose adjacency list v was discovered.

Breadth First Search

- Assume we have a directed graph $G=(V, E)$ where every $v \in V$ is initially white, and a first-in-first-out queue \mathbf{Q}.
- The breadth first search (BFS) proceeds according to:

00	color $[s] \leftarrow$ Gray
01	$\mathrm{d}[\mathrm{s}] \leftarrow 0$
02	$\pi[s] \leftarrow$ NULL
03	push s on \mathbf{Q}
04	while $\|\mathbf{Q}\|>0$:
05	pop u from \mathbf{Q}
06	for $v \in \operatorname{adj}[u]$:
07	if color $[v]==$ White:
08	color $[v] \leftarrow$ Gray
09	$\mathrm{d}[v] \leftarrow \mathrm{d}[u]+1$
10	$\pi[v] \leftarrow u$
11	push V on \mathbf{Q}
12	u.color \leftarrow Black

Shortest Paths

- For a given source vertex $s \in V$, define the distance from s to some $v \in V$ as the number of arcs traversed going from s to v.
- Define the shortest-path distance $\delta(s, v)$ as the smallest possible distance of all paths from s to v.
- A path from s to v of length $\delta(s, v)$ is said to be a shortest path.
- A shortest path from s to v is not necessarily unique.

Shortest Path

- Lemma 22.1: Let $G=(V, E)$ be a directed graph, and let $s \in V$ be an arbitrary vertex. Then given any edge $(v, w) \in E$, it holds

$$
\delta(s, w) \leq \delta(s, v)+1
$$

- Proof: If v is reachable from s, then w must also be reachable from s. In this case, the shortest path from s to w cannot be longer than $\delta(s, v)$ plus one for the edge (v, w).

Distances Computed by BFS

Lemma 22.2: Let $G=(V, E)$ be a directed graph. Assume that the BFS is run beginning from the source vertex $s \in V$. Upon termination, the value $\mathrm{d}[v]$ computed by the BFS for every $v \in V$ satisfies $\mathrm{d}[v] \geq \delta(s, v)$.

Proof of Lemma

- Make the inductive hypothesis $\mathrm{d}[u] \geq \delta(s, u)$.
- Each $\mathrm{d}[u]$ is set exactly once and never changed.
- Let $v \in V$ denote a node discovered while exploring adj[u].
- Basis: The hypothesis clearly holds for the source vertex s given the assignment in Line 01.
- Induction: Let $v \in V$ denote a vertex that is discovered while expanding the adjacency list of $u \in V$. The inductive hypothesis implies $\mathrm{d}[u] \geq \delta(s, u)$. Hence, $\mathrm{d}[v]=\mathrm{d}[v]+1 \geq \delta(s, v)+1 \geq \delta(s, v)$.

Distinct Values Maintained in the Queue

Lemma 22.3: Suppose that during the execution of BFS on a graph $G=(V, E)$, the queue Q contains the vertices $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, where v_{1} is the head of Q and v_{r} is the tail. Then, $\mathrm{d}\left[v_{r}\right] \leq \mathrm{d}\left[v_{1}\right]+1$ and $\mathrm{d}\left[v_{i}\right] \leq \mathrm{d}\left[v_{i+1}\right]$ for $i=1,2, \ldots, r-1$.

Theorem: Correctness of BFS

- Let $G=(V, E)$ be a directed graph. Assume that the BFS is performed beginning from the source vertex $s \in V$. Upon termination, for every $v \in V, \mathrm{~d}[v]=\delta(s, v)$. Moreover, one of the shortest paths from s to v is the path from s to $\pi[v]$, followed by the edge $\pi[v] \rightarrow v$.
- Proof: Proceeds by induction on sets of the form

$$
V_{k}=\{v \in V: \delta(s, v)=k\} .
$$

Recursive Function visit(u)

- Assume we have a directed graph $G=(V, E)$ where every $v \in V$ is initially white, and let time denote a global time stamp.
- Define the recursive function visit (u) for some $u \in V$. 00 def visit(u):

```
01 color[u] \leftarrow Gray # u has been discovered
```

02 discover $[u] \leftarrow$ time \leftarrow time +1
03 for v in adj[u]: \# explore all edges of u
04 if color[v] == White:
$05 \pi[v] \leftarrow u$
06 visit (v)
07 color $[u] \leftarrow$ Black \# u done, paint it black
08 finish $[u] \leftarrow$ time \leftarrow time +1

Depth First Search

Pseudocode for a complete depth first search (DFS) is given below.

00	def $\operatorname{dfs}(V, E):$
01	for u in $V:$
02	$\operatorname{color}[u] \leftarrow$ White
03	$\pi[u] \leftarrow$ NULL
04	time $\leftarrow 0$
05	for u in $V:$
06	if $\operatorname{color}[u]==$ White $:$
07	$\operatorname{visit}(u)$

Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph $G=(V, E)$, for any two vertices u and v, exactly one of the following conditions holds:

- the intervals [discover[u], finish[u]] and [discover[v], finish[v]] are entirely disjoint, and neither u nor v is a descendant of the other in any depth first forest;
- the interval [discover[u], finish[u]] is contained entirely within [discover[v], finish[$v]$], and u is a descendant of v in a depth-first tree.
- the interval [discover[v], finish[v]] is contained entirely within [discover[u], finish[u]], and v is a descendant of u in a depth-first tree.

Topological Sort

- Let us define a directed acyclic graph (dag) $G=(V, E)$ as a digraph that contains no cycles.
- A topological sort is a linear ordering of all $v \in V$ such that if $u \rightarrow v \in E$, then u appears before v in the ordering.
- A topological sort can be performed with the following steps:
(1) Call $\operatorname{dfs}(G)$ to determine the finishing times finish[$v]$ for each $v \in V$.
(2) As each v is finished, insert it into the front of a linked list.
- Upon termination, the linked list contains the topologically sorted vertices.

Correctness of Topological Sort

Theorem 22.12: For a graph $G=(V, E)$, the algorithm described on the last slide provides a correct topological sort of the nodes.

MLSP

Sets

- A set is a collection of distinguishable objects known as members or elements.
- That x is a member of the set S is denoted as $x \in S$ and read as " x is in S."
- Two sets A and B are equal, which is denoted as $A=B$, iff they contain the same elements. For example, $\{1,2,3,1\}=\{1,3,2\}=\{3,2,1\}$.
- Frequently encountered sets have special notations:
- \emptyset denotes the empty set.
- \mathbf{Z} denotes the set of integers, $\{\ldots, 2,1,0,1,2, \ldots\}$.
- \mathbf{R} denotes the set of real numbers.
- \mathbf{N} denotes the set of natural numbers, $\{0,1,2, \ldots\}$.

Set Operations

- The intersection of sets A and B is the set $A \cap B=\{x: x \in A$ and $x \in B\}$.
- The union of sets A and B is the set $\{A \cup B=\{x: x \in A$ or $x \in B\}$.
- The difference between two sets A and B is the set $A B=\{x: x \in A$ and $x \notin B\}$.

Subsets

- If $x \in A$ implies $x \in B$, then we say A is a subset of B and write $A \subseteq B$.
- A set A is a proper subset of B when $A \subseteq B$, but $A \neq B$.
- For two sets A and $B, A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
- The number of elements in a set A is denoted as $|A|$.
- A set A has $2^{|A|}$ subsets including \emptyset.
- The power set of A, denoted as 2^{A}, is the set of all subsets of A.

Relations

- An ordered pair is denoted as (a, b). The ordered pair (a, b) is not the same as the ordered pair (b, a).
- The Cartesian product $A \times B$ of two sets is the set $\{(a, b): a \in A$ and $b \in B\}$.
- A binary relation R on two sets A and B is a subset of the Cartesian product $A \times B$.
- For $(a, b) \in R$, we typically write $a R b$.
- That R is binary relation on A implies R is a subset of $A \times A$.

Example: "Less than" is a binary relation on the natural numbers given by $\{(a, b): a, b \in N$ and $a<b\}$.

Linear Order

- A total or linear order R on a set A is a relation whereby for all $a, b \in A$ either $a R b$ or $b R a$.
- In other words, every pairing of elements from A can be related by R.
- For example, is a linear order on the set of natural numbers.
- The function "is a descendant of" is not a linear order on the set of human beings, as there are pairs of individuals neither of whom is descended from the other.

Equivalence Relations

- Recall that we defined an equivalence relation $x R_{L} y$ for a language L when either $x z$ and $y z$ belong to L or both do not belong.
- The index is the number of equivalence classes in a language L.
- An equivalence relation R_{L} whereby $x z R_{L} y z$ follows from $x R_{L} y$ is known as right invariant.

Myhill-Nerode Theorem

The following statements are equivalent:
(1) The set $L \subseteq \Sigma^{*}$ is accepted by a finite-state automaton.
(2) L is the union of equivalence classes of a right invariant equivalence relation with finite index.
(3) The equivalence relation can be defined as follows: $x R_{L} y$ holds if and only if $x z$ is in L when $y z$ is in L. Then L has a finite index.

Coarsest Partition

- Consider a set S and an initial partition π of S into disjoint blocks $\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}$.
- There is also given a function f on S.
- The task is to find the coarsest partition $\pi^{\prime}=\left\{E_{1}, E_{2}, \ldots, E_{q}\right\}$ such that
(1) π^{\prime} is consistent with π (that is, each E_{i} is a subset of some B_{j}, and,
(2) a and b in E_{i} implies $f(a)$ and $f(b)$ are in some E_{j}.
- We then call π^{\prime} the coarsest partition of S compatible with π and f.

MLSP

Naive Solution

- Let B_{i} be a block.
- Examine $f(a)$ for each a in B_{i}.
- B_{i} is partitioned so that a and b are in the same block if and only if $f(a)$ and $f(b)$ are in the same block.
- This process is iterated until no further refinements are possible.

Example

- Let $S=\{1,2, \ldots, n\}$, and let $B_{1}=\{1,2, \ldots, n-1\}$, $B_{2}=\{n\}$ be the original partition.
- Define the function f on S as

$$
f(i) \triangleq \begin{cases}i+1, & \text { for } 1 \leq i<n \\ n, & \text { for } i=n\end{cases}
$$

- On the first iteration, B_{1} is partitioned into $\{1,2, \ldots, n-2\}$ and $\{n-1\}$.
- This iteration requires $n-1$ steps because each element in B_{1} must be examined.
- On the next iteration, we partition $\{1,2, \ldots, n-2\}$ into $\{1,2, \ldots, n-3\}$ and $\{n-2\}$.

Running Time of the Naive Solution

- A total of $n-2$ such iterations are required, whereby the i th iteration requires $n-i$ steps, for a total of

$$
\sum_{i=1}^{n-2} 1=\frac{n(n-1)}{2}-1
$$

steps.

- The problem with the naive solution is that refining each block requires $\mathcal{O}(n)$ steps, even if only a single element is removed.
- We would like to develop an algorithm whereby refining a block into two subblocks requires time proportional to the smaller subblock.
- This will result in a $\mathcal{O}(n \log n)$ algorithm.

Better Solution

- For each $B \subseteq S$, let $f^{-1}(B)=\{b \mid f(b) \in B\}$.
- The naive algorithm partitions a block B_{i} by the values of $f(a)$ for $a \in B_{i}$.
- Instead, let us partition with respect to B_{i} those blocks B_{j} which contain at least one element in $f^{-1}\left(B_{i}\right)$ and one element not in $f^{-1}\left(B_{i}\right)$.
- That is, each B_{j} is partitioned into the sets $\left\{b \mid b \in B_{j}\right.$ and $\left.f(b) \in B_{i}\right\}$, and $\left\{b \mid b \in B_{j}\right.$ and $\left.f(b) \notin B_{i}\right\}$.

Result of Partitioning

- Once we have partitioned with respect to B_{i}, we need not partition again with respect to B_{i} unless B_{i} is itself split.
- If initially $f(b) \in B_{i}$ for each element $b \in B_{j}$, and B_{i} is split into B_{i}^{\prime} and $B_{i}^{\prime \prime}$, then we can partition B_{j} with respect to either B_{i}^{\prime} or $B_{i}^{\prime \prime}$.
- That is, we partition with respect to B_{i} those blocks B_{j} which contain at least one element in $f^{-1}\left(B_{i}\right)$ and one element not in $f^{-1}\left(B_{i}\right)$.
- This follows because $\left\{b \mid b \in B_{j}\right.$ and $\left.f(b) \in B_{i}^{\prime}\right\}$ is the same as $B_{i}-\left\{b \mid b \in B_{j}\right.$ and $\left.f(b) \in B_{i}^{\prime \prime}\right\}$.

Conventional Automaton

Let define a conventional automaton without weights.
Definition (finite-state machine)
A FSM is a 5-tuple $A=(\Sigma, Q, E, i, F)$ consisting of

- an alphabet Σ,
- a finite set of states Q,
- a finite set of transitions $E \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$,
- a initial state $i \in Q$,
- and a set of end states $F \subseteq Q$.

Conventional Automaton (cont'd.)

Definition

A transition $e=(p[e], \|[e], n[e]) \in E$ consists of

- a previous state $p[e] \in Q$,
- a next state $n[e] \in Q$,
- a label $l[e] \in \Sigma$,

A final state $q \in F$ may have an associated label $a \in \Sigma$.

Problem Statement

- Consider a FSM with the set of states Q.
- We wish to partition Q into subsets $M=\left\{Q_{i}\right\}$ such that $\forall a: \exists e_{1}=\left(p_{1}, a, n_{1}\right), e_{2}=\left(p_{2}, a, n_{2}\right) \in E$, it holds

$$
\begin{equation*}
p_{1}, p_{2} \in Q_{j} \Rightarrow n_{1}, n_{2} \in Q_{i} \tag{1}
\end{equation*}
$$

for some i.

- We seek the coarsest partition $\left\{Q_{i}\right\}$ of Q, which is by definition the partion with fewest elements, that satisfies (1).

MLSP

Problem Statement (cont'd.)

- Let ν be a partition of Q and let f be a function mapping $Q \times \Sigma$ to Q. In the present case, f is defined implicitly through the transitions $E \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$.
- For each $Q_{i} \in \nu$ define the sets

$$
\begin{align*}
\operatorname{symbol}\left(Q_{i}\right) & =\{a \in \Sigma: \exists e=(p, a, n) \in E, n, p \in Q\}, \tag{2}\\
f^{-1}\left(Q_{i}, a\right) & =\left\{p \in Q: \exists e=(p, a, n) \in E, n \in Q_{i}\right\} \tag{3}
\end{align*}
$$

- So defined symbol $\left(Q_{i}\right)$ is subset of symbols used as input labels on at least one edge into a node in Q_{i}.
- Similarly, $f^{-1}\left(Q_{i}, a\right)$ is the set of nodes having at least one transition labeled with a into a node in Q_{i}.

Pseudocode

Pseudocode for the partitioning algorithm is shown below:

```
0 def partition():
\(01 \quad Q_{0} \leftarrow Q-F\)
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
    \(Q_{0}\)
\(Q_{1}\)
\(\leftarrow\)
    push \(Q_{0}\) on \(\mathbf{S}\)
    push \(Q_{1}\) on \(\mathbf{S}\)
    \(n \leftarrow 1\)
    while \(\mid \mathbf{S |}>0\) :
        pop \(P\) from \(\mathbf{S}\)
        for \(a\) in \(\operatorname{symbol}(P)\) :
            for \(Q_{j}\) such that \(Q_{j} \cap f^{-1}(P, a) \neq \emptyset\) and \(Q_{j} \notin f^{-1}(P, a)\) :
            n += 1
            \(Q_{n} \leftarrow Q_{j} \cap f^{-1}(P, a)\)
            \(Q_{j} \overleftarrow{Q_{j}} \underset{Q_{j}}{ } Q_{j} \mathbf{S}\) :
                        push \(Q_{n}\) on \(\mathbf{S}\)
            else:
                if \(\left|Q_{n}\right|<Q_{j}\left|Q_{j}\right|:\)
                else:
                        push \(Q_{j}\) on \(\mathbf{S}\)
```


Discussion

- We will say the set $T \subseteq Q$ is safe for ν if for every $B \in \nu$, either $B \subseteq f^{-1}(T, a)$ or $B \cap f^{-1}(T, a)=\emptyset \forall a \in \Sigma$.
- The key of the algorithm is the partitioning of Q_{j} in Lines 11-12, which ensures that there are no transitions of the form $e_{1}=\left(p_{1}, a, n_{1}\right)$ and $e_{2}=\left(p_{2}, a, n_{2}\right)$, where either $p_{1}, p_{2} \in Q_{j}$ or $p_{1}, p_{2} \in Q_{n}$, for which (1) does not hold.
- Hence, Lines 12-13 ensure that P is safe for the resulting partition, inasmuch as if $Q_{j} \cap f^{-1}(P, a) \neq \emptyset$ for some Q_{j}, then either $Q_{j} \subseteq f^{-1}(P, a)$, or else Q_{j} is split into two blocks, the first of which is a subset of $f^{-1}(P, a)$, and the second of which is disjoint from that subset.
- For reasons of efficiency, the smaller of Q_{j} and Q_{n} is placed on \mathbf{S} in Lines 16-19, unless Q_{j} is already on \mathbf{S}, in which case Q_{n} is placed on \mathbf{S} in Lines 13-14 regardless of whether or not $\left|Q_{n}\right|<\left|Q_{j}\right|$.

Set Partitioning Lemma

Aho et. al (1974) proved the following lemma.
Lemma (set partitioning): After the algorithm in the Listing terminates, every block Q_{i} in the resulting partition ν^{\prime} is safe for the partition ν^{\prime}.

MLSP

Definition: Closed Semi-Ring

A closed semiring is a system $S \triangleq(\Sigma, \oplus, \otimes, \overline{0}, \overline{1})$ where Σ is a set of elements, \oplus and \otimes are binary operations on elements of Σ, satisfying the following properties:
(1) $(\Sigma, \oplus, \overline{0})$ is a monoid, which implies it is closed under \oplus, and \oplus is associative, and $\overline{0}$ is the identity. Likewise, $(\Sigma, \otimes, \overline{1})$ is a monoid. Moreover, we will assume $\overline{0}$ is an annihilator on \otimes; i.e., $a \otimes \overline{0}=\overline{0} \otimes a=\overline{0}$.
(2) \oplus is commutative; it may also be idempotent such that $a \oplus a=a$.
(3) \otimes distributes over \oplus, such that $a \otimes(b \oplus c)=a \otimes b \oplus a \otimes c$, and $(b \oplus c) \otimes a=b \otimes a \oplus c \otimes a$

Examples of Semirings: Tropical Semiring

- In ASR we typically use one of two semirings, depending on the operation.
- The tropical semiring $\left(\mathbb{R}^{+}, \min ,+, \infty, 0\right)$, where \mathbb{R}^{+} denotes the set of non-negative real numbers, is useful for finding the shortest path through a search graph.
- The set \mathbb{R}^{+}is used in the tropical semiring because the hypothesis scores represent negative log-likelihoods.
- The two operations on weights correspond to the multiplication of two probabilities, which is equivalent to addition in the negative log-likelihood domain, and discarding all but the lowest weight, such as is done by the Viterbi algorithm.

Examples: Log-Probability Semiring

- The log-probability semiring $\left(\mathbb{R}^{+}, \oplus_{\log },+, \infty, 0\right)$ differs from the tropical semiring only inasmuch as the min operation has been replaced with the log-add operation $\oplus_{\log }$, which is defined as

$$
a \oplus_{\log } b \triangleq-\log \left(e^{-a}+e^{-b}\right)
$$

- The log-probability semiring is typically used for the weight pushing equivalence transformation discussed later.

Diagram of Weight Pushing

Before Weight Pushing

After Weight Pushing

Figure: Weight pushing over the tropical semiring for a simple transducer.

Potential Function

- The weight pushing algorithm proposed begins with the definition of a potential function $V: Q \rightarrow \mathcal{K}-\{\overline{0}\}$.
- The weights of the transducer are then reassigned according to

$$
\begin{aligned}
\lambda & \leftarrow \lambda \otimes V(i), \\
\forall e \in E, w[e] & \leftarrow[V(p[e])]^{-1} \otimes(w[e] \otimes V(n[e])), \\
\forall f \in F, \rho(f) & \leftarrow[V(f)]^{-1} \otimes \rho[f] .
\end{aligned}
$$

- This reassignment has no effect on the weight assigned to any accepted string, as each weight from V is added and subtracted once.

Potential Function (cont'd.)

- For optimal weight pushing, we assign a potential to a state q to be equal to the weight of the shortest path from q to the set of final states F, such that

$$
V(q)=\bigoplus_{\pi \in P(q)} w[\pi]
$$

where $P(q)$ denotes the set of all paths from q to F.

- The general all pairs shortest path algorithm is too inefficient for weight pushing on very large transducers.
- Instead an approximate shortest path algorithm is used.

MLSP

Psuedocode for Calculating the Potential Function

```
def shortestDistance():
    for \(j\) in 1 to \(|Q|\) :
        \(d[j] \leftarrow r[j] \leftarrow \overline{0}\)
    \(\mathbf{Q} \leftarrow\{i\}\)
    while \(|\mathbf{Q}|>0:\)
        pop \(q\) from \(\mathbf{Q}\)
        \(R \leftarrow r[q]\)
        \(r[q] \leftarrow \overline{0}\)
        for \(e \in E[q]\) :
        if \(d[n[e]] \neq d[n[e]] \oplus(R \otimes w[e]):\)
            \(d[n[e]] \leftarrow d[n[e]] \oplus(R \otimes w[e])\)
            \(r[n[e]] \leftarrow r[n[e]] \oplus(R \otimes w[e])\)
            if \(n[e] \notin \mathbf{Q}\) :
                push \(n[e]\) on \(\mathbf{Q}\)
    \(d[i] \leftarrow \overline{1}\)
```


Psuedocode (cont'd.)

- The algorithm functions by first assigning all states q a potential of $\overline{0}$ in Lines 01-02, and placing the initial state i on a queue \mathbf{Q} of states that are to be relaxed in Line 03.
- For each node q, the current potential $d[q]$ as well as the amount of weight $r[q]$ that has been added since the last relaxation step are maintained.
- When q is popped from \mathbf{Q}, all nodes $n[e]$ that can be reached from the adjacency list $E[q]$ are tested in Line 09 to determine whether they should be relaxed.

Psuedocode (cont'd.)

- The relaxation itself occurs in Lines 10 and 11. Thereafter the relaxed node $n[e]$ is placed on \mathbf{Q} if not already there in Lines 12 and 13.
- The algorithm terminates when \mathbf{Q} is depleted.
- The approximation in this algorithm involves the test in Line 09, which, strictly speaking, must always be true implying, that the algorithm will never terminate.
- In practice, however, a small threshold on the deviation from equality can be set so that the algorithm terminates after a finite number of relaxations.

Psuedocode (cont'd.)

- Before calculating the potential of each node, it is necessary to first reverse the graph.
- This implies that for every edge $e=\left(p, l_{\mathrm{i}}, l_{0}, w, n\right)$ in the original graph R there will be an edge $e_{\text {reverse }}=\left(n, l_{i}, l_{0}, w, p\right)$ in $R_{\text {reverse }}$.
- More formally, given a graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbf{R}$, and a set of final states $F \subset V$, consider a directed, weigted graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with initial state i, and

$$
\begin{aligned}
& V^{\prime} \triangleq V \cup\{i\}, \\
& F^{\prime} \triangleq\{s\}, \\
& E^{\prime} \triangleq\{v \rightarrow u: u, v \in V \text { and } u \rightarrow v \in E\} \cup\{i \rightarrow f: f \in F\}
\end{aligned}
$$

Summary

- In this lecture, we considered breadth first search (BFS) and depth first search (DFS).
- We proved that BFS determines the shortest pass from the source node to every other node for unweighted graphs.
- We also proved that DFS is useful for topologically sorting nodes.
- We considered an algorithm for set partitioning that can also be used to minimize a weighted-finite state automaton.
- Finally, we began to consider an algorithm for weight pushing.
- Next lecture, we will see how these algorithms can be used to construct a search graph from several knowledget sources.

