Introduction to Finite-State Automata

John McDonough

Language Technologies Institute,
Machine Learning for Signal Processing Group,
Carnegie Mellon University

March 26, 2012

<O MLSP

Introduction to Finite-State Automata

Introduction

@ In this lecture, we present the basic definitions associated
with conventional finite-state automata (FSA).

@ We also investigate various aspects related to
determinism, including e-transitions.

@ In the second part of the lecture, we discuss semirings,
which will enable important generalizations of the definition
of path labels.

@ This discussion will lead naturally to our discussion of
shortest path algorithms in the next lecture.

Coverage: Hopcroft and Ullman (1979), Sections 2.3 and 2.4;
Aho et al. (1974), Section 5.6.
<« VLSP

Introduction to Finite-State Automata

Spherical Harmonics

@ Let us now define the spherical harmonic of order n and
degree m as

m A (2n+1)(n_m)! m imo

Y)(0,0) = \/ Ir (ntm) Pl'(cos6) e (1)
where P]I" is the associated Legendre function

@ The addition theorem for spherical harmonics states

n

> Y05, 65)Y(0,6), (2

1
m=—n

47

Pn(cosy) =5~

where Y denotes the complex conjugate of Y. @ MLSP

Introduction to Finite-State Automata

Orthonormality

A
RN
TR

Figure: The spherical harmonics Yy, Yi, Y2 and Ys.

The spherical harmonics possess the all important property of
orthonormality, which implies

P S /Q Y76,) Y7 (0, 6) dQ

3)
where denotes the surface of a sphere.

<O MLSP

Introduction to Finite-State Automata

Three-Dimensional Beampatterns

Radially Symmetric MVDR Asymmetric MVDR

<O MLSP

Introduction to Finite-State Automata

The Man-Wolf-Goat-Cabbage Problem Revisited

@ A solution to the man-wolf-goat-cabbage problem
corresponds to a path through the transition diagram from
the start state MWGC-; to the end state ;-MWGC.

@ ltis clear from the transition diagram that there are two
equally short solutions to the problem.

@ There is an infinitude of possible solutions, all but two of
which involve useless cycles.

@ As with all finite-state automata, there is a unique start
state.

@ This particular FSA also has a single valid end or
accepting state, which is not generally the case.

<O MLSP

Introduction to Finite-State Automata

Formal Definitions

@ Formally define a finite-state automaton (FSA) as the
5-tuple (Q, %, 6,1, F) where

Q is a finite set of states,

Y is afinite alphabet,

i € Qis the initial state,

F c Qis the set of final states,

d is the transition function mapping Q x X to Q, which

implies 6(q, a) is a state for each state g and input a

provided that a is accepted when in state q.

<O MLSP

Introduction to Finite-State Automata

Extending ¢ to Strings

@ To handle strings, we must extend § from a function
mapping Q x ¥ to Q, to a function mapping Q x * to Q,
where Y* is the Kleene closure.

@ Let 6(q, w) be the state that the FSA is in after beginning
from state g and reading the input string w.

@ Formally, we require:

Q g9 =aq . .
@ for all strings w and symbols a, /(q, wa) = 6(4(q, w), a).

@ Condition (1) implies that the FSA cannot change state
without receiving an input.
@ Condition (2) tells us how to find the current state after
reading a nonempty input string wa; find p = 4(q, w), then
find 6(p, a).
@ As §(q,a) = 6(3(q,¢€),a) = 6(q, a) we shall use & <@ MLSP

to represent both § and § henceforth.

Introduction to Finite-State Automata

Regular Languages

@ A string x is accepted by a FSA M = (Q, %, 4,1/, F) if and
only if §(i,x) = p forsome p € F.

@ The language accepted by M, which is denoted as L(M), is
that set {x|(/, x) € F}.

@ A language is a regular set, or simply regular, if it is the set
accepted by some automaton.

@ L(M) is the complete set of strings accepted by M.

<O MLSP

Introduction to Finite-State Automata

Nondeterministic Finite-State Automata

@ Consider a modification to the original definition of the
FSA, whereby zero, one, or more transitions from a state
with the same symbol are allowed.

@ This new model is known as the nondeterministic
finite-state automaton (NFSA).

@ Observe that there are two edges labeled 0 out of state i,
one each going back to state i and to state gs.

<O MLSP

Introduction to Finite-State Automata

Formal Definitions: NFSA

@ Formally define a nondeterministic finite-state automaton
(NFSA) as the 5-tuple (Q, X, 4, i, F) where
e Qs afinite set of states,
¥ is a finite alphabet,
i € Qis the initial state,
F C Qs the set of final states,
§ is the transition function mapping Q x ¥ to 29, the power
set of Q.

@ This implies (g, a) is the set of all states p such that there
is a transition labeled a from g to p.

< VLSP.

Introduction to Finite-State Automata

Equivalence of NFSAs and DFSAs

Theorem (equivalence of DFSAs and NFSAs): Let L be the
language accepted by a nondeterministic finite-state
automaton. Then there exists a deteriministic finite-state
automaton that accepts L.

<O MLSP

Introduction to Finite-State Automata

Power Set Construction

@ Let My = (Q4, %, 44, i1, F1) denote the NFSA accepting L.
@ Define a DFSA M, = (Qx, X, 42, Ip, F2) as follows:
e The states of M, are all subsets of the states of M, that is
Q =29,
o M, keeps track in its states the subset of states that My
could be in at any given time.
@ F» is the subset of states in Q> which contain a state f ¢ F;.
@ An element m € Q. will be denoted as
m=[my,my, ..., my], where each m, € Q.
e Finally, i = [i].

<O MLSP

Introduction to Finite-State Automata

Definition of d2([p1, P2, - - ., Pn], @)

@ By definition,
Sa([my, mo, ..., my],a) = [p1, P2, ..., PN]
if and only if

51({m17m27"'7mN}aa) = {p17p27"'7pN}'

@ In other words, d2([my, Mo, ..., my], @) is computed for
[my, mo, ..., my] € Qo by applying ¢ to each m, € Qj.

<O MLSP

Introduction to Finite-State Automata

Proof by Induction

@ We wish to demonstrate through induction on the string
length |x| that

(52(i2,X) = [m1,m2, .. .,mN]
if and only if
51(i1,X) = {m1,m2,...,mN}.

@ Basis: The result follows trivally for |x| = 0, as i = [i;] and
X = €.

@ Inductive Hypothesis: Assume that the hypothesis is true
for strings of length N or less, and demonstrate it is then
necessarily true for strings of length N + 1. @ MLSP

Introduction to Finite-State Automata

Proof of Inductive Hypothesis

@ Let xabe a string of length N + 1, where a € %.
@ Then,
02(lo, xa) = 92(d2(k, X), a).

@ By the inductive hypothesis,
52(/2,X) = [m1 , Mo, ..., mN]
if and only if

51(i1,X) = {m1,m2,...,mN}.

<O MLSP

Introduction to Finite-State Automata

Proof (contd.)

@ But by the definition of 5,
S2([my, mg, ..., my], @) = [P1,P2,- -, PN]
if and only if
o1({my, ma,...,mn}, @) = {p1,p2,...,pN}.

@ Thus,
52(i27 Xa) = [p17p27 <o 7pN]

if and only if
(51(i1,Xa) = {p17p27 o apN}a
which establishes the inductive hypothesis. < MLSP

Introduction to Finite-State Automata

Implementing the Power Set Construction

@ The power set 29 of Q contains 2|9 subsets.

@ This implies that the power set construction requires
exponential running time in the worst case; i.e., itis
intractable.

@ Fortunately, for the FSAs used for speech recognition and
many other applications, the vast majority of subsets in the
power set are never constructed.

@ The key to successfully implementing the power set
construction is to not construct a priori all subsets in the
power set.

@ Rather, only those subsets are constructed which are
actually required.

@ This subset is comprised of those subsets which @ LSP
are accessible from the initial node. MLSE

Introduction to Finite-State Automata

Pseudocode for Power Set Construction

The pseudocode for the power set construction is given below.

00 def powerSetConstruction (7y, 7o) :

01 F, « 1]

02 i2 — i1

03 Q « {i}

04 while |Q] > O:

05 pop @ from Q

06 if 3 9@ € @ such that q € Fy:
07 F, «~ F U {QQ}

08 for a such that §(qe, a) # 0:
09 if 02(Qe, @) & Qo

10 Q « Q@ U {6(g, a}
11 push d02(qe, @) on Q

<O MLSP

Introduction to Finite-State Automata

Finite-State Automata with e-Transitions

@ We can further extend the definition of finite-state
automata to allow e-transitions, which by definition
consume no input symbol.

@ Formally, define a nondeterministic finite-state automaton
with e-transitions as the quintuple M = (Q, %, 4, i, F).

@ All elements of M have the same meaning as before
except that 6 maps Q x (X U {¢}) to 29.

@ This implies that §(g, a) will consist of all states me Q
such that there is a transition labeled a from g to p, where
eithera=corac .

@ As before, we let L(M) denote the language accepted by
M= (Q,Z,cSA, i, F) such that
L(M) = {w|d(i, w) contains a state p € F}. <Gy VLSP

Introduction to Finite-State Automata

Extending ¢ to Strings, Part Il

@ We now extend the definition of § to 4 that maps
Q x (XU {e})* to 29,

@ In the end, §(q, w) will include all states p such that there
is a path from g to p labeled with w, perhaps including
edges labeled with e.

@ In computing 4, it will be necessary to determine the set of
states accessible from a given state g using only
e-transitions.

< VLSP.

Introduction to Finite-State Automata

Computing the e-closure(q)

@ We use e—closure(q) to denote the set of states p € Q
such that the is a path from q to p consisting solely of
e-transitions.

@ This definition can be extended naturallytoaset P C Q
according to

e—closure(P) = |_J e-closure(q).
qeP

<O MLSP

Introduction to Finite-State Automata

Equivalence of NFSAs with and without
e-Transitions

Theorem: If L is accepted by a NFSA with e-transitions, then L
is accepted by a DFSA without e-transitions.

o Let My = (4, %, 64,11, F) denote a NFSA with
e-transitions. Let us construct Mo = (Qo, X, d2, ip, F2) where

£ _ Fy U {i1}, if e—closure(iy) contains a state p € Fy,
27\ F, otherwise,

and d»(qg, a) is 41(g,a) forge Q; and a € ¥.
@ We wish to show by induction on |x| that
d2(f2, X) = 01(f1, X).
<« MLSP

Introduction to Finite-State Automata

Inductive Hypothesis

@ This may be untrue for x = ¢, however, as ¢'(i, €) = {i},
while 6(i, €) = e—closure(i).
@ Hence, we begin the induction with |x| = 1:
e Basis: For |x| =1, let x = a,and §'(i,a) = §(i, a) by the
definition of §'.
e Induction: For |x| > 1,let x = waforw e X*andac x.

Then
§'(i,wa) = §(8' (i, w), a).

<O MLSP

Introduction to Finite-State Automata

Proof of Inductive Hypothesis

@ By the inductive hypothesis, &'(i, w) = §(i, w).
@ Let §(i,w) = P. We must demonstrate that §'(P, a) = (i, wa).

@ But

5I(P7 a) = Ual(qv a) = Ug(qv a).

qeP qgeP
Then as P = §(i, w) we have

Jd(q,a) = (i, wa)

geP

by the definition of 4.

@ Therefore,

&' (i, wa) = 6(i, wa). < MLSP

Introduction to Finite-State Automata

Completing the Proof

Completing the proof requires demon§trating that &'(/, x)
contains a state @' € F’ if and only if o(/, x) contains a state
geF.

< VLSP.

Introduction to Finite-State Automata

Pseudocode for e~Removal

@ In Line 02, all edges not labeled with ¢ are added to p.
@ Inthe for loop

00 def epsilonRemoval(T):

01 for p € Qq:

02 Edges[p] < {e € Edges[p] : Symboll[e] # €}

03 for q € e-closure[p]:

04 Edges[p] < Edges[p] U {(p,a, w®w,r) : (q,a wy,r) € Edges|q],a # e}
05 if g € Fandp ¢ F:

06 F « F u {p}

07 Pl — oAl ® W @ plal)

<O MLSP

Introduction to Finite-State Automata

Definition: Closed Semi-Ring

A closed semiring is a system S 2 (¥, ®,®,0,1) where X is a
set of elements, ® and ® are binary operations on elements of
¥, satisfying the following properties:
Q (x,3,0) is a monoid, which implies it is closed under ¢,
and @ is associative, and 0 is the identity. Likewise,
(X, ®,1) is a monoid. Moreover, we will assume 0 is an
annihilatoron ®;i.e.,a®0=0® a=0.
@ @ is commutative; it may also be idempotent such that
ada=a.
© « distributes over @, suchthata® (b®dc)=awbdaxc,
and (b c)ra=bradc®a

<O MLSP

Introduction to Finite-State Automata

Definition (cont’d.)

@ Ifaj,a,...,ap,...Iis acountable sequence where a, € S,
thenai®a ®---®ap®--- exists and is unique.
Moreover, associativity and commutativity apply to infinite
as well as finite sums.

© ® must distribute over countably infinite as well as finite
sums.

Properties 4 and 5 together imply
(@an> ® (@bm> = @an ® bp = @ (@ an ® bm))
n m n,m m
<« VLSP

Introduction to Finite-State Automata

Semiring Example 1

@ Let Sy £ ({0,1},®,®,0,1) with © and ® defined as
follows:

| 0 1 ® | 0
0 1]; 0 | 0
11 110

@ Properties 1-3 are easily verified.

_LOEB
—_ O —

@ For Properties 4 and 5 note that a countable &—sum is 0 iff
all terms are 0.

<O MLSP

Introduction to Finite-State Automata

Example 2: Tropical Semiring

@ Let S; £ (R, min, +,00,0), where R is the set of
nonnegative real numbers including co.

@ Itis easy to verify that oo is the identity under min.
@ Similarly, 0 is the identity under +.

< VLSP.

Introduction to Finite-State Automata

Example 3: String Semiring

@ Let X denote a finite alphabet, and let
Sz 2 (Fg,U,-,0,{e}), where Fs is the family of sets of
finite-length strings of symbols from ¥, including e.

@ @ = U is the set union operator, and - denotes set
concatenation.

@ The concatenation of sets A and B, denoted as A - B, is the
set {x|x =yz,y € Aand z € B}.

@ As an exercise, verify properties 1-3.

@ For properties 4 and 5, observe that countable unions
behave as they should if we define x € (Aj U Ay U --) iff

x € A, for some n.
<« VLSP

Introduction to Finite-State Automata

Example 4: Cartesian Product of Semirings

@ Let S, £ S, x S; where x denotes the Cartesian product
of two semirings.

@ Prove that Sy is a semiring.

<O MLSP

Introduction to Finite-State Automata

Idempotence

@ Consider the semiring S £ (X, @, ®,0,1).
@ Forae S,ifa® a= a, then & is said to be idempotent.

< VLSP.

Introduction to Finite-State Automata

Closure

@ Let x denote the closure operator.
e If (S,®,®,0,1) is a closed semiring, and a € S, then

define
o
A
a = e
n=0

where & =1,anda" £ aw® a" .
@ Thisistosaya*=1davavwadarpaxa---.
@ Property 4 ensures a* € S.
@ Properties 4 and 5 together imply a* =1 ® a® a*.
@ Notethat0* = 1* = 1.

<O MLSP

Introduction to Finite-State Automata

Example 5

@ Consider the semirings S1, S», andS; defined in the
previous examples.

@ For §y,a*=1,fora=0,1.
@ ForS,,a*=0forallac R.

@ For 33,
A" ={e}U{xix2---xpln>1and xx € Afor 1 < k < n} for
allAec Fs.

@ Thatis {a,b}* = {¢, a, b, aa, ab, ba, bb, aaa, .. .}; i.e., all
strings of a’s and b’s including the empty string.

@ Infact Fx =2, the power set of ¥*.

< VLSP.

Introduction to Finite-State Automata

Directed Graph: Path Labels

@ Consider a directed graph G = (V, E) in which each edge
e € E is labeled by an element from some semiring
(S, @,®,0,1).

@ The label of a path is the ®-product of the edge labels in
the path taken in the order in which they occur.

@ For each pair of vertices (v, w), we define c(v, w) to be the
@-sum of the labels of all paths between v and w; we refer
to c(v, w) as the cost of going from v to w.

@ If Gis cyclic, there may be an infinitude of paths from v to
w; our axiomatic definition of the semiring, however, will
ensure that c(v, w) is well defined.

<O MLSP

Introduction to Finite-State Automata

Example 6

@ Consider the graph in the figure in which each edge is
labeled with an element from semiring S;.

@ Thelabel of path v,w,xis1-1=1.
@ The cycle from w to w has label 1 -0 = 0.

@ In fact, every path of length greater than zero from w to w
has label 0.

@ The path of zero length from w to w, however, has cost 1;
hence c(w,w) = 1.

<O MLSP

Introduction to Finite-State Automata

Summary

@ In this lecture, we have defined conventional finite-state
automaton.

@ We have considered both deterministic and
nondeterministic finite-state automata.

@ We have also considered the power set construction,
whereby a deterministic automaton can be constructed
from a nondeterministic automaton.

@ In addition, we have generalized the definition of automata
to include eaAStransitions.

@ We have seen how an automaton without e—transitions can
be constructed from an automaton with e—transitions.

@ Finally, we have investigated the use of semirings to
generalize the concept of path labels. 4@ MLSP

Introduction to Finite-State Automata

@ ltem ...

< MLSP

