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Introduction

In this lecture, we present the basic definitions associated
with conventional finite-state automata (FSA).
We also investigate various aspects related to
determinism, including ε-transitions.
In the second part of the lecture, we discuss semirings,
which will enable important generalizations of the definition
of path labels.
This discussion will lead naturally to our discussion of
shortest path algorithms in the next lecture.

Coverage: Hopcroft and Ullman (1979), Sections 2.3 and 2.4;
Aho et al. (1974), Section 5.6.
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Spherical Harmonics

Let us now define the spherical harmonic of order n and
degree m as

Y m
n (θ, φ) ,

√
(2n + 1)

4π
(n −m)!

(n + m)!
Pm

n (cos θ) eimφ, (1)

where Pm
n is the associated Legendre function

The addition theorem for spherical harmonics states

Pn(cos γ) =
4π

2n + 1

n∑
m=−n

Y m
n (θs, φs)Ȳ m

n (θ, φ), (2)

where Ȳ denotes the complex conjugate of Y .
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Orthonormality

Figure: The spherical harmonics Y0, Y1, Y2 and Y3.

The spherical harmonics possess the all important property of
orthonormality, which implies

δn,n′ δm,m′ =

∫
Ω

Y m
n (θ, φ) Ȳ m′

n′ (θ, φ) dΩ (3)

where Ω denotes the surface of a sphere.
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Three-Dimensional Beampatterns

Radially Symmetric MVDR Asymmetric MVDR
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The Man-Wolf-Goat-Cabbage Problem Revisited

A solution to the man-wolf-goat-cabbage problem
corresponds to a path through the transition diagram from
the start state MWGC-; to the end state ;-MWGC.
It is clear from the transition diagram that there are two
equally short solutions to the problem.
There is an infinitude of possible solutions, all but two of
which involve useless cycles.
As with all finite-state automata, there is a unique start
state.
This particular FSA also has a single valid end or
accepting state, which is not generally the case.
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Formal Definitions

Formally define a finite-state automaton (FSA) as the
5-tuple (Q,Σ, δ, i ,F ) where

Q is a finite set of states,
Σ is a finite alphabet,
i ∈ Q is the initial state,
F ⊂ Q is the set of final states,
δ is the transition function mapping Q × Σ to Q, which
implies δ(q,a) is a state for each state q and input a
provided that a is accepted when in state q.
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Extending δ to Strings

To handle strings, we must extend δ from a function
mapping Q × Σ to Q, to a function mapping Q × Σ∗ to Q,
where Σ∗ is the Kleene closure.
Let δ(q,w) be the state that the FSA is in after beginning
from state q and reading the input string w .
Formally, we require:

1 δ̂(q, ε) = q,
2 for all strings w and symbols a, δ̂(q,wa) = δ(δ̂(q,w),a).

Condition (1) implies that the FSA cannot change state
without receiving an input.
Condition (2) tells us how to find the current state after
reading a nonempty input string wa; find p = δ̂(q,w), then
find δ(p,a).
As δ̂(q,a) = δ(δ̂(q, ε),a) = δ(q,a) we shall use δ
to represent both δ and δ̂ henceforth.
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Regular Languages

A string x is accepted by a FSA M = (Q,Σ, δ, i ,F ) if and
only if δ(i , x) = p for some p ∈ F .
The language accepted by M, which is denoted as L(M), is
that set {x |δ(i , x) ∈ F}.
A language is a regular set, or simply regular, if it is the set
accepted by some automaton.
L(M) is the complete set of strings accepted by M.
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Nondeterministic Finite-State Automata

Consider a modification to the original definition of the
FSA, whereby zero, one, or more transitions from a state
with the same symbol are allowed.
This new model is known as the nondeterministic
finite-state automaton (NFSA).
Observe that there are two edges labeled 0 out of state i ,
one each going back to state i and to state q3.
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Formal Definitions: NFSA

Formally define a nondeterministic finite-state automaton
(NFSA) as the 5-tuple (Q,Σ, δ, i ,F ) where

Q is a finite set of states,
Σ is a finite alphabet,
i ∈ Q is the initial state,
F ⊆ Q is the set of final states,
δ is the transition function mapping Q × Σ to 2Q , the power
set of Q.

This implies δ(q,a) is the set of all states p such that there
is a transition labeled a from q to p.
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Equivalence of NFSAs and DFSAs

Theorem (equivalence of DFSAs and NFSAs): Let L be the
language accepted by a nondeterministic finite-state
automaton. Then there exists a deteriministic finite-state
automaton that accepts L.
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Power Set Construction

Let M1 = (Q1,Σ, δ1, i1,F1) denote the NFSA accepting L.
Define a DFSA M2 = (Q2,Σ, δ2, i2,F2) as follows:

The states of M2 are all subsets of the states of M1, that is
Q2 = 2Q1 .
M2 keeps track in its states the subset of states that M1
could be in at any given time.
F2 is the subset of states in Q2 which contain a state f ∈ F1.
An element m ∈ Q2 will be denoted as
m = [m1,m2, . . . ,mN ], where each mn ∈ Q1.
Finally, i2 = [i1].
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Definition of δ2([p1,p2, . . . ,pN ],a)

By definition,

δ2([m1,m2, . . . ,mN ],a) = [p1,p2, ...,pN ]

if and only if

δ1({m1,m2, . . . ,mN},a) = {p1,p2, . . . ,pN}.

In other words, δ2([m1,m2, . . . ,mN ],a) is computed for
[m1,m2, . . . ,mN ] ∈ Q2 by applying δ to each mn ∈ Q1.
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Proof by Induction

We wish to demonstrate through induction on the string
length |x | that

δ2(i2, x) = [m1,m2, . . . ,mN ]

if and only if

δ1(i1, x) = {m1,m2, . . . ,mN}.

Basis: The result follows trivally for |x | = 0, as i2 = [i1] and
x = ε.
Inductive Hypothesis: Assume that the hypothesis is true
for strings of length N or less, and demonstrate it is then
necessarily true for strings of length N + 1.
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Proof of Inductive Hypothesis

Let xa be a string of length N + 1, where a ∈ Σ.
Then,

δ2(i2, xa) = δ2(δ2(i2, x),a).

By the inductive hypothesis,

δ2(i2, x) = [m1,m2, . . . ,mN ]

if and only if

δ1(i1, x) = {m1,m2, . . . ,mN}.
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Proof (cont’d.)

But by the definition of δ2,

δ2([m1,m2, . . . ,mN ],a) = [p1,p2, . . . ,pN ]

if and only if

δ1({m1,m2, . . . ,mN},a) = {p1,p2, . . . ,pN}.

Thus,
δ2(i2, xa) = [p1,p2, . . . ,pN ]

if and only if

δ1(i1, xa) = {p1,p2, . . . ,pN},

which establishes the inductive hypothesis.
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Implementing the Power Set Construction

The power set 2Q of Q contains 2|Q| subsets.
This implies that the power set construction requires
exponential running time in the worst case; i.e., it is
intractable.
Fortunately, for the FSAs used for speech recognition and
many other applications, the vast majority of subsets in the
power set are never constructed.
The key to successfully implementing the power set
construction is to not construct a priori all subsets in the
power set.
Rather, only those subsets are constructed which are
actually required.
This subset is comprised of those subsets which
are accessible from the initial node.



Introduction to Finite-State Automata

Pseudocode for Power Set Construction

The pseudocode for the power set construction is given below.

00 def powerSetConstruction(τ1, τ2):
01 F2 ← ∅
02 i2 ← i1
03 Q ← {i2}
04 while |Q| > 0:
05 pop q2 from Q
06 if ∃ q ∈ q2 such that q ∈ F1:
07 F2 ← F2 ∪ {q2}
08 for a such that δ(q2, a) 6= ∅:
09 if δ2(q2, a) 6∈ Q2:
10 Q2 ← Q2 ∪ {δ2(q2, a)}
11 push δ2(q2, a) on Q
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Finite-State Automata with ε-Transitions

We can further extend the definition of finite-state
automata to allow ε-transitions, which by definition
consume no input symbol.
Formally, define a nondeterministic finite-state automaton
with ε-transitions as the quintuple M = (Q,Σ, δ, i ,F ).
All elements of M have the same meaning as before
except that δ maps Q × (Σ ∪ {ε}) to 2Q.
This implies that δ(q,a) will consist of all states m ∈ Q
such that there is a transition labeled a from q to p, where
either a = ε or a ∈ Σ.
As before, we let L(M) denote the language accepted by
M = (Q,Σ, δ, i ,F ) such that
L(M) = {w |δ̂(i ,w) contains a state p ∈ F}.
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Extending δ to Strings, Part II

We now extend the definition of δ to δ̂ that maps
Q × (Σ ∪ {ε})∗ to 2Q.
In the end, δ̂(q,w) will include all states p such that there
is a path from q to p labeled with w , perhaps including
edges labeled with ε.
In computing δ̂, it will be necessary to determine the set of
states accessible from a given state q using only
ε-transitions.
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Computing the ε-closure(q)

We use ε–closure(q) to denote the set of states p ∈ Q
such that the is a path from q to p consisting solely of
ε-transitions.
This definition can be extended naturally to a set P ⊆ Q
according to

ε–closure(P) =
⋃
q∈P

ε–closure(q).
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Equivalence of NFSAs with and without
ε-Transitions

Theorem: If L is accepted by a NFSA with ε-transitions, then L
is accepted by a DFSA without ε-transitions.

Let M1 = (Q1,Σ, δ1, i1,F1) denote a NFSA with
ε-transitions. Let us construct M2 = (Q2,Σ, δ2, i2,F2) where

F2 =

{
F1 ∪ {i1}, if ε–closure(i1) contains a state p ∈ F1,

F1, otherwise,

and δ2(q,a) is δ̂1(q,a) for q ∈ Q1 and a ∈ Σ.
We wish to show by induction on |x | that
δ2(i2, x) = δ̂1(i1, x).
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Inductive Hypothesis

This may be untrue for x = ε, however, as δ′(i , ε) = {i},
while δ̂(i , ε) = ε–closure(i).
Hence, we begin the induction with |x | = 1:

Basis: For |x | = 1, let x = a, and δ′(i ,a) = δ̂(i ,a) by the
definition of δ′.
Induction: For |x | > 1, let x = wa for w ∈ Σ∗ and a ∈ Σ.
Then

δ′(i ,wa) = δ′(δ′(i ,w),a).
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Proof of Inductive Hypothesis

By the inductive hypothesis, δ′(i ,w) = δ̂(i ,w).

Let δ̂(i ,w) = P. We must demonstrate that δ′(P,a) = δ̂(i ,wa).

But
δ′(P,a) =

⋃
q∈P

δ′(q,a) =
⋃
q∈P

δ̂(q,a).

Then as P = δ̂(i ,w) we have⋃
q∈P

δ̂(q,a) = δ̂(i ,wa)

by the definition of δ̂.

Therefore,
δ′(i ,wa) = δ̂(i ,wa).



Introduction to Finite-State Automata

Completing the Proof

Completing the proof requires demonstrating that δ′(i , x)
contains a state q′ ∈ F ′ if and only if δ̂(i , x) contains a state
q ∈ F .
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Pseudocode for ε–Removal

In Line 02, all edges not labeled with ε are added to p.
In the for loop

00 def epsilonRemoval(τ):
01 for p ∈ Q1:
02 Edges[p] ← {e ∈ Edges[p] : Symbol[e] 6= ε}
03 for q ∈ ε-closure[p]:
04 Edges[p] ← Edges[p] ∪ {(p, a,w⊗w1, r) : (q, a,w1, r) ∈ Edges[q], a 6= ε}
05 if q ∈ F and p 6∈ F:
06 F ← F ∪ {p}
07 ρ[p] ← ρ[p] ⊕ (w ⊗ ρ[q])
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Definition: Closed Semi-Ring

A closed semiring is a system S , (Σ,⊕,⊗, 0̄, 1̄) where Σ is a
set of elements, ⊕ and ⊗ are binary operations on elements of
Σ, satisfying the following properties:

1 (Σ,⊕, 0̄) is a monoid, which implies it is closed under ⊕,
and ⊕ is associative, and 0̄ is the identity. Likewise,
(Σ,⊗, 1̄) is a monoid. Moreover, we will assume 0̄ is an
annihilator on ⊗; i.e., a⊗ 0̄ = 0̄⊗ a = 0̄.

2 ⊕ is commutative; it may also be idempotent such that
a⊕ a = a.

3 ⊗ distributes over ⊕, such that a⊗ (b ⊕ c) = a⊗ b ⊕ a⊗ c,
and (b ⊕ c)⊗ a = b ⊗ a⊕ c ⊗ a
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Definition (cont’d.)

1 If a1,a2, . . . ,an, . . . is a countable sequence where an ∈ S,
then a1 ⊕ a2 ⊕ · · · ⊕ an ⊕ · · · exists and is unique.
Moreover, associativity and commutativity apply to infinite
as well as finite sums.

2 ⊗ must distribute over countably infinite as well as finite
sums.

Properties 4 and 5 together imply(⊕
n

an

)
⊗

(⊕
m

bm

)
=
⊕
n,m

an ⊗ bn =
⊕

n

(⊕
m

(an ⊗ bm)

)
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Semiring Example 1

Let S1 , ({0,1},⊕,⊗,0,1) with ⊕ and ⊗ defined as
follows: ⊕ | 0 1

0 | 0 1
1 | 1 1

 ;

⊗ | 0 1
0 | 0 0
1 | 0 1

 .
Properties 1–3 are easily verified.
For Properties 4 and 5 note that a countable ⊕–sum is 0 iff
all terms are 0.
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Example 2: Tropical Semiring

Let S2 , (R,min,+,∞,0), where R is the set of
nonnegative real numbers including∞.
It is easy to verify that∞ is the identity under min.
Similarly, 0 is the identity under +.
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Example 3: String Semiring

Let Σ denote a finite alphabet, and let
S3 , (FΣ,∪, ·, ∅, {ε}), where FΣ is the family of sets of
finite-length strings of symbols from Σ, including ε.
⊕ = ∪ is the set union operator, and · denotes set
concatenation.
The concatenation of sets A and B, denoted as A · B, is the
set {x |x = yz, y ∈ A and z ∈ B}.
As an exercise, verify properties 1–3.
For properties 4 and 5, observe that countable unions
behave as they should if we define x ∈ (A1 ∪ A2 ∪ · · · ) iff
x ∈ An for some n.
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Example 4: Cartesian Product of Semirings

Let S4 , S2 × S3 where × denotes the Cartesian product
of two semirings.
Prove that S4 is a semiring.
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Idempotence

Consider the semiring S , (Σ,⊕,⊗, 0̄, 1̄).
For a ∈ S, if a⊕ a = a, then ⊕ is said to be idempotent.
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Closure

Let ∗ denote the closure operator.
If (S,⊕,⊗, 0̄, 1̄) is a closed semiring, and a ∈ S, then
define

a∗ ,
∞⊕

n=0

an,

where a0 ≡ 1, and an , a⊗ an−1.
This is to say a∗ ≡ 1⊕ a⊕ a⊗ a⊕ a⊗ a⊗ a · · · .
Property 4 ensures a∗ ∈ S.
Properties 4 and 5 together imply a∗ = 1⊕ a⊗ a∗.
Note that 0∗ = 1∗ = 1.
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Example 5

Consider the semirings S1,S2,andS3 defined in the
previous examples.
For S1, a∗ = 1, for a = 0,1.
For S2, a∗ = 0 for all a ∈ R.
For S3,
A∗ = {ε} ∪ {x1x2 · · · xn|n ≥ 1 and xk ∈ A for 1 ≤ k ≤ n} for
all A ∈ FΣ.
That is {a,b}∗ = {ε,a,b,aa,ab,ba,bb,aaa, . . .}; i.e., all
strings of a’s and b’s including the empty string.
In fact FΣ = 2Σ∗ , the power set of Σ∗.
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Directed Graph: Path Labels

Consider a directed graph G , (V ,E) in which each edge
e ∈ E is labeled by an element from some semiring
(S,⊕,⊗, 0̄, 1̄).
The label of a path is the ⊗-product of the edge labels in
the path taken in the order in which they occur.
For each pair of vertices (v ,w), we define c(v ,w) to be the
⊕-sum of the labels of all paths between v and w ; we refer
to c(v ,w) as the cost of going from v to w .
If G is cyclic, there may be an infinitude of paths from v to
w ; our axiomatic definition of the semiring, however, will
ensure that c(v ,w) is well defined.
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Example 6

Consider the graph in the figure in which each edge is
labeled with an element from semiring S1.
The label of path v ,w , x is 1 · 1 = 1.
The cycle from w to w has label 1 · 0 = 0.
In fact, every path of length greater than zero from w to w
has label 0.
The path of zero length from w to w , however, has cost 1;
hence c(w ,w) = 1.
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Summary

In this lecture, we have defined conventional finite-state
automaton.
We have considered both deterministic and
nondeterministic finite-state automata.
We have also considered the power set construction,
whereby a deterministic automaton can be constructed
from a nondeterministic automaton.
In addition, we have generalized the definition of automata
to include εâĂŞtransitions.
We have seen how an automaton without ε–transitions can
be constructed from an automaton with ε–transitions.
Finally, we have investigated the use of semirings to
generalize the concept of path labels.
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Item ...


