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Recap: HMMs are Generalized Templates

• A set of “states”

– A distance function associated with each state

• A set of transitions

– Transition-specific penalties
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• An HMM for each word

• Score incoming speech against each HMM

• Pick word whose HMM scores best

– Best == lowest cost

– Best == highest score

– Best == highest probability

Recap: Isolated word recognition with 

HMMs
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HMM for word2HMM for word1



Recap: Recognizing word sequences

• Train HMMs for words

• Create HMM for each word sequence

– Recognize as in isolated word case
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Combined HMM for the sequence word 1 word 2



Recap: Recognizing word sequences

• Create word graph HMM representing all word 

sequences

– Word sequence obtained from best state sequence
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Motivation

• Prior to this, we have looked at speech recognition without 

worrying about language structure

– i.e. we’ve treated all word sequences as being equally likely

– But this is rarely the case

• Using language knowledge is crucial for recognition accuracy

– Humans use a tremendous amount of context to “fill in holes” in 

what they hear, and to disambiguate between confusable words

– Speech recognizers should do so too!

• Such knowledge used in a decoder is called a language model 

(LM)
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Impact of  Language Models on ASR

• Example with a 20K word vocabulary system:

– Without an LM (“any word is equally likely” model):

AS COME ADD TAE ASIAN IN THE ME AGE OLE FUND IS MS. GROWS 
INCREASING ME IN TENTS MAR PLAYERS AND INDUSTRY A PAIR WILLING TO 
SACRIFICE IN TAE GRITTY IN THAN ANA IF PERFORMANCE

– With an appropriate LM (“knows” what word 
sequences make sense):

AS COMPETITION IN THE MUTUAL FUND BUSINESS GROWS INCREASINGLY 
INTENSE MORE PLAYERS IN THE INDUSTRY APPEAR WILLING TO SACRIFICE 
INTEGRITY IN THE NAME OF PERFORMANCE
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Syntax and Semantics

• However, human knowledge about context is far 

too rich to capture in a formal model

– In particular, humans rely on meaning

• Speech recognizers only use models relating to 

word sequences

– i.e. focus on syntax rather than semantics
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Importance of  Semantics

• From Spoken Language Processing, by Huang, Acero and 
Hon:

– Normal language, 5K word vocabulary:
• ASR: 4.5% word error rate (WER)

• Humans: 0.9% WER

– Synthetic language generated from a trigram LM, 20K word 
vocabulary:
• Example: BECAUSE OF COURSE AND IT IS IN LIFE AND …

• ASR: 4.4% WER

• Humans: 7.6% WER

– Deprived of context, humans flounder just as badly, or worse

• Still, we will focus only on the syntactic level
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Types of  LMs

• We will use grammars or LMs to constrain the search algorithm

• This gives the decoder a bias, so that not all word sequences are equally 

likely

• Our topics include:

– Finite state grammars (FSGs)

– Context free grammars (CFGs)

– Decoding algorithms using them

• These are suitable for small/medium vocabulary systems, and highly 

structured systems

• For large vocabulary applications, we use N-gram LMs, which will be 

covered later
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Finite State Grammar Examples

• Three simple finite state grammars (FSGs):

first

second

third

thirty-first

january

february

march

december

sunday

monday

tuesday

saturday

Day of week Date in month Month

…… …



12

A More Complex Example

• A robot control application:

– TURN 10 DEGREES CLOCKWISE

– TURN 30 DEGREES ANTI CLOCKWISE

– GO 10 METERS

– GO 50 CENTI METERS

– Allowed angles: 10 20 30 40 50 60 70 80 90 (clk/anticlk)

– Allowed distances: 10 20 30 40 50 60 70 80 90 100 (m/cm)

• Vocabulary of this application = 17 words:

– TURN  DEGREES  CLOCKWISE  ANTI

GO  METERS  CENTI  and  TEN  TWENTY  …  HUNDRED

– Assume we have word HMMs for all 17 words

• How can we build a continuous speech recognizer for this application?
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A More Complex Example

• One possibility: Build an “any word 
can follow any word” sentence 
HMM using the word HMMs

• Allows many word sequences that 
simply do not make any sense!

– The recognizer would search through 
many meaningless paths

– Greater chance of misrecognitions

• Must tell the system about the legal
set of sentences

• We do this using an FSG

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf

ROBOT 0  GRAPH
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Robot Control FSG (ROBOT1)

ten

twenty

ninety

degrees

go
ten

twenty
meters

e

start
final

hundred

LM states

…

… anti

clockwiseturn e

centi

e

S1

S2

S3

S4 S5

S9

S6
S7 S8

NOTE: WORDS ARE ON EDGES
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Elements of  Finite State Grammars

• FSGs are defined by the following (very much like HMMs):

– A finite set of states

• These are generically called LM states

– One or more of the states are initial or start states

– One or more of the states are terminal or final states

– Transitions between states, optionally labeled with words

• The words are said to be emitted by those transitions

• Unlabelled transitions are called null or e transitions

– Transitions have probabilities associated with them, as usual

• All transitions out of a state without an explicit transition probability are assumed to be equally 

likely

• Any path from a start state to a final state emits a legal word sequence (called a 

sentence)

• The set of all possible sentences produced by the FSG is called its language
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The All-Word Model

• Is the “any word can follow any word” model 

also an FSG?

(ROBOT0)
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Decoding with Finite State Grammars

• How can we incorporate our ROBOT1 FSG into 

the Viterbi decoding scheme?
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Decoding with Finite State Grammars

• Construct a sentence HMM from the given FSG

– Replace edges in the FGS with the HMMs for words

– We are now in familiar territory

• Apply the standard time synchronous Viterbi search

– Only modification needed: need to distinguish 

between LM states (see later)

• First, how do we construct the sentence HMM 

for an FSG?



19

Sentence HMMs from FSGs

• To construct a sentence HMM, using word HMMs, we will 
assume each word HMM has:
– Exactly one non-emitting start and one non-emitting final state

• Replace each FSG transition by a sentence HMM fragment:

w

A B BA
P(w|A)

P(w|A)

Non-emitting states created to represent FSG states

HMM for w

Sentence HMM fragmentFSG transition

e

A B BAP(e|A) P(e|A)

start final

e
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Sentence HMMs from FSGs (contd.)

• Every FSG state becomes a non-emitting state in 

the sentence HMM

• Every FSG transition is replaced by a sentence 

HMM fragment as shown previously

• Start and final states of sentence HMM = start 

and final states of FSG
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Robot Control (ROBOT1) Sentence HMM

• The robot control FSG ROBOT1 becomes this sentence HMM:

turn

ten

twenty
degrees

go
ten

twenty

meters

But what about silence?

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9
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Sentence HMMs from FSGs (contd.)

• People may pause between words

– Unpredictably

• Solution: Add optional silence HMM at each 
sentence HMM state:

HMM for silence

Sentence HMM fragment

Sentence 
HMM state
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ROBOT1 with Optional Silences

turn

ten

twenty
degrees

go
ten

twenty

meters

silence

silence

Silence HMM not 
shown at all states

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9
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Trellis Construction for ROBOT0

• How many rows does a 

trellis constructed from 

ROBOT0 sentence 

HMM have?

– Assume 3 emitting 

states + 1 non-emitting 

start state + 1 non-

emitting final state, for 

each word HMM

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf
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Trellis Construction for ROBOT0

• What are the cross-word 

transitions in the trellis?

– (More accurately, word-exit 

and word-entry transitions)

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf
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ROBOT0 Cross Word Transitions
tu

rn
an

ti
cl

o
ck

w
is

e
go

d
eg

re
e

s
m

et
er

s
te

n
h

u
n

d
re

d
… …

ce
n

ti

Time = t t+1

Sf

Ss

From final 
states of all 
word HMMs 
to Sf

Sf back to Ss

From Ss to start 
states of all 
word HMMs

t+2

Sf

Ss
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ROBOT0 Cross Word Transitions

• A portion of trellis shown between 

time t and t+2

• Similar Transitions happen from final 

states of all 17 words to start states of 

all 17 words

• Non-emitting states shown “between 

frames”

– Order them as follows:

• Find all null state sequences

• Make sure there are no cycles

• Order them by dependency

• Other trellis details not shown

Time = t t+1Sf

Ss

te
n

go

t+2Sf

Ss

… …

… …
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Trellis Construction for ROBOT1

• How many rows does a trellis constructed from 

ROBOT1 sentence HMM have?

– Assume 3 emitting states + 1 non-emitting start state 

+ 1 non-emitting final state, for each word HMM, as 

before
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ROBOT1 Sentence HMM

turn

ten

twenty
degrees

go
ten

twenty

meters

silence

silence

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9
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Trellis Construction for ROBOT1

• No. of trellis rows = No. of states in sentence HMM

– 26 x 5 word HMM states

• Note: words “ten” through “ninety” have two copies since they occur 

between different FSG states!  (More on this later)

– The 9 FSG states become sentence HMM non-emitting states

– 9 x 3 silence HMM states, one at each FSG state

– = 130 + 9 + 27 = 166 states or 166 rows

• Often it is possible to reduce the state set, but we won’t worry 

about that now

• What about word exit and entry transitions?
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ROBOT1 Cross Word Transitions

• A portion of trellis shown 

between time t and t+2

• Note the FSG-constrained 

cross word transitions; no 

longer fully connected

• Note there are two 

instances of “ten”!

– From different portions of 

the graph

Time = t

S3

te
n S7

d
eg

re
es

te
n

ce
n

ti
m

et
er

t+1

S8

S3

S7

t+2

S8
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Words and Word Instances

• The previous example brings forth an important 

point

– FSG states (LM states in general) are distinct, and 

need to be preserved during decoding

– If the same word is emitted by two different 

transitions (i.e. either the source or destination states 

are different), there are actually two copies of the 

word HMM in the sentence HMM
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Creation of  Application FSGs

• While FSGs can be trained from training data, they can be easily 

handcrafted from prior knowledge of expected inputs

– Suitable for situations where little or no training data available

– Small to medium vocabulary applications with well structured dialog

• Example applications:

– Command and control (e.g. robot control or GUI control)

– Form filling (e.g. making a train reservation)

• Constraints imposed by an FSG lead to very efficient search 

implementation

– FSGs rules out many improbable or illegal word sequences outright

– Parts of the full NxT search trellis are a priori ruled out
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Example Application: A Reading Tutor

• Project LISTEN: A reading tutor for children 

learning to read

– (http://www.cs.cmu.edu/~listen)

http://www.cs.cmu.edu/~listen


35

Example Application: Reading Tutor

• A child reads a story aloud, one sentence at a time

• The automated tutor “listens” to the child and tries to 

help if it has any difficulty

– Pausing too long at a word

– Misreading a word

– Skipping a word

 The child should be allowed to have “normal” reading behavior

 Repeat a word or phrase, or the entire sentence

 Partially pronounce a word one or more times before reading it correctly

 Hence, the tutor should account for both normal and incorrect reading

 We do this by building an FSG for the current sentence, as follows
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Example Application: Reading Tutor

• For each sentence, the tutor builds a new FSG

• Let’s say the current sentence is:
– ONCE UPON A TIME A BEAUTIFUL PRINCESS …

• First we have the “backbone” of the FSG:
– The backbone models straight, correct reading

• (Only part of the FSG backbone is shown)

– FSG states mark positions in text

ONCE UPON A TIME A …
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Example Application: Reading Tutor

• We add backward null transitions to allow 
repetitions
– Models jumps back to anywhere in the text

– It is not necessary to add long backward transitions!

eeeee

ONCE UPON A TIME A
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Example Application: Reading Tutor

• We add truncated word models to allow partial reading of 
a word (shown with an _; e.g. ON_)
– There may be more than one truncated form; only one is 

shown

– Partial reading is assumed to mean the child is going to 
attempt reading the word again, so we do not change state

– Short words do not have truncated models

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_
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Example Application: Reading Tutor

• We add transitions parallel to each correct word, to model 

misreading, labeled with a garbage model (shown as ???)

– How we obtain the garbage model is not important right now

– It essentially models any unexpected speech; e.g.

• Misreading, other than the truncated forms

• Talking to someone else

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???
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Example Application: Reading Tutor

• We add forward null transitions to model one or 

more words being skipped

– It is not necessary to add long forward transitions!

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???

e e e e e
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Example Application: Reading Tutor

• Not to forget!  We add optional silences between words

– Silence transitions (labeled <sil>) from a state to itself

• If the child pauses between words, we should not change state

• Finally, we add transition probabilities estimated from 
actual data recorded with children using the reading tutor

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???

e e e e e

<sil> <sil> <sil> <sil> <sil> <sil>
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Example Application: Reading Tutor

• The FSG is crafted from an “expert’s” mental model of how a child 

might read through text

• The FSG does not model the student getting stuck (too long a silence)

– There is no good way to model durations with HMMs or FSGs

– Instead, the application specifically uses word segmentation information to 

determine if too long a silence has elapsed

• The application creates a new FSG for each new sentence, and destroys 

old ones

• Finally, the FSG module even allows dynamic fine-tuning of transition 

probabilities and modifying the FSG start state

– To allow the child continuing from the middle of the sentence after being 

helped

– To adapt to a child’s changing reading behavior
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FSG Representation

• A graphical representation is perfect for human 

visualization of the system

• However, difficult to communicate to a speech 

recognizer!

– Need a textual representation

– Two possibilities: tabular, or rule-based

• Commonly used by most real ASR packages that support 

FSGs
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Tabular FSG Representation Example

• Example FSG from Sphinx-2 / Sphinx-3

FSG_BEGIN

NUM_STATES   5

START_STATE  0

FINAL_STATE  4

TRANSITION  0 1  0.9   ONCE

TRANSITION  0 0  0.01  ONCE

TRANSITION  1 2  0.9   UPON

TRANSITION  1 1  0.01  UPON

TRANSITION  2 3  0.9   A

TRANSITION  2 2  0.01  A

TRANSITION  3 4  0.9   TIME

TRANSITION  3 3  0.01  TIME

TRANSITION  0 1  0.01

TRANSITION  1 2  0.01

TRANSITION  2 3  0.01

TRANSITION  3 4  0.01

TRANSITION  1 0  0.017

TRANSITION  2 0  0.017

TRANSITION  3 0  0.017

TRANSITION  4 0  0.017

TRANSITION  2 1  0.01

TRANSITION  3 2  0.01

TRANSITION  4 3  0.01

FSG_END

Table of transitions
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Tabular FSG Representation

• Straightforward conversion from graphical to tabular 

form:

– List of states (e.g. states may be named or numbered)

• E.g. Sphinx-2 uses state numbers

– List of transitions, of the form:

Origin-state, destination state, emitted word, transition probability

• Emitted word is optional; if omitted, implies a null transition

• Transition probability is optional

– All unspecified transition probabilities from a given state are 

equally likely

– Set of start states

– Set of final states
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Rule-Based FSG Representation

• Before we talk about this, let us consider 

something else first
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Recursive Transition Networks

• What happens if we try to “compose” an FSG using other FSGs as its 

components?

– Key idea: A transition in an FSG-like model can be labeled with an entire 

FSG, instead of a single word

• When the transition is taken, it can emit any one of the sentences in the language of 

the label FSG

• Such networks of nested grammars are called recursive transition 

networks (RTNs)

– Grammar definitions can be recursive

• But first, let us consider such composition without any recursion

– Arbitrary networks composed in this way, that include recursion, turn out 

not to be FSGs at all
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Nested FSGs

• E.g. here is a <date> FSG:

– Where, <day-of-week>, <date-in-month> and 

<month> are the FSGs defined earlier

• Exercise: Include <year> into this specification, 

and allow reordering the components

<day-of-week> <date-in-month> <month>

A B C D
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More Nested FSGs

• Example: Scheduling task
– (Transition labels with <> actually refer to other FSGs)

– The <date> FSG above is further defined in terms of other FSGs

– Thus, FSG references can be nested arbitrarily deeply

• As usual, we have not shown transition probabilities, but they 
are nevertheless there, at least implicitly
– E.g. meetings are much more frequent than travels (for most office-

workers!)

<person>meeting

<date>

<city>

with

travel to

on
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Flattening Composite FSGs for Decoding

• In the case of the above scheduling task FSG, it is 

possible to flatten it into a regular FSG (i.e. without 

references to other FSGs) simply by embedding the 

target FSG in place of an FSG transition

– Very similar to the generation of sentence HMMs from 

FSGs

• At this point, the flattened FSG can be directly 

converted into the equivalent sentence HMM for 

decoding
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Flattening Composite FSGs for Decoding

• However, not all composite “FSGs” can be 

flattened in this manner, if we allow recursion!

– As mentioned, these are really RTNs, and not FSGs

• The grammars represented by them are called 

context free grammars (CFGs)

• Let us consider this recursion in some detail
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Recursion in Grammar Networks

• It is possible for a grammar definition to refer to itself

• Let us consider the following two basic FSGs for robot control:

– <Turn-command> FSG:

– <Move-command> FSG:

turn

ten

twenty

degrees

ninety

…
anti clockwise

e

go

ten

twenty

hundred

… centi meters

e
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Recursion in Grammar Networks (contd.)

• We can rewrite the original robot control grammar using 
the following recursive definition:

– <command-list> grammar:

– <command-list> grammar is defined in terms of itself

<turn-command>

<command-list>

<move-command>

e
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Recursion in Grammar Networks (contd.)

• Recursion can be direct, or indirect

– <command-list> grammar is defined directly in terms of itself

– Indirect recursion occurs when we can find a sequences of 

grammars, F1, F2, F3, ..., Fk, such that:

• F1 refers to F2, F2 refers to F3, etc., and Fk refers back to F1

• Problem with recursion:

– It is not always possible to simply blindly expand a grammar 

by plugging in the component grammars in place of transitions

• Leads to infinite expansion
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A Little Digression: Grammar Libraries

• It is very useful to have a library of reusable grammar 

components

– New applications can be designed rapidly by composing together already 

existing grammars

• A few examples of common, reusable grammars:

– Date, month, day-of-week, etc.

– Person names and place name (cities, countries, states, roads)

– Book, music or movie titles

– Essentially, almost any list is a potentially reusable FSG
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RTNs and CFGs

• Clearly, RTNs are a powerful tool for defining 

structured grammars

• As mentioned, the class of grammars represented 

by such networks is called the class of context 

free grammars (CFGs)

– Let us look at some characteristics of CFGs
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Context Free Grammars

• Compared to FSGs, CFGs are a more powerful 

mechanism for defining languages (sets of acceptable 

sentences)

– “Powerful” in the sense of imposing more structure on 

sentences

– CFGs are a superset of FSGs 

• Every language accepted by an FSG is also accepted by some CFG

• But not every CFG has an equivalent FSG

• Human languages are actually fairly close to CFGs, at 

least syntactically

– Many applications use them in structured dialogs
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Context Free Grammars

• What is a CFG?

– Graphically, CFGs are exactly what we have been discussing:

• The class of grammars that can have concepts defined in terms of other 

grammars (possibly themselves, recursively)

– They are context free, because the definition of a concept is 

the same, regardless of the context in which it occurs

• i.e. independent of where it is embedded in another grammar

• However, unlike FSGs, may not have graphical 

representations

• In textual form, CFGs are defined by means of production 

rules
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Context Free Grammars (contd.)

• Formally, a CFG is defined by the following:

– A finite set of terminal symbols (i.e. words in the vocabulary)

– A finite set of non-terminal symbols (the concepts, such as <date>, 

<person>, <move-command>, <command-list> etc.

– A special non-terminal, usually S, representing the CFG

– A finite set of production rules

• Each rule defines a non-terminal as a possibly empty sequence of other 

symbols, each of which may be a terminal or a non-terminal

– There may be multiple such definitions for the same non-terminal

• The empty rule is usually denoted: <non-terminal> ::= e

• The language generated by a CFG is the set of all sentences of 

terminal symbols that can be derived by expanding its special 

non-terminal symbol S, using the production rules
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Why Are CFGs Useful?

• The syntax of large parts of human languages can be 
defined using CFGs

– e.g. a simplistic example:
<sentence> ::= <noun-phrase> <verb-phrase>

<noun-phrase> ::= <name> | <article> <noun>

<verb-phrase> ::= <verb> <noun-phrase>

<name> ::= HE | SHE | JOHN | RAJ …

<article> ::= A | AN | THE

<noun> ::= BALL | BAT | FRUIT | BOOK …

<verb> ::= EAT | RUN | HIT | READ …

• Clearly, the language allows non-sensical sentences:
JOHN EAT A BOOK

– But it is syntactically “correct”

– The grammar defines the syntax, not the semantics
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Robot Control CFG

• Example rules for robot control

• <command-list> is the CFG being defined (= S):

<command-list>    ::=  <turn-command>  |  <move-command>

<command-list>    ::=  <turn-command><command-list>

<command-list>    ::=  <move-command><command-list>

<turn-command>  ::=  TURN <degrees> DEGREES <direction>

<direction>           ::=  clockwise | anti clockwise

<move-command>::=  GO <distance> <distance-units>

<distance-units>   ::=  meters  |  centi meters

<degrees>            ::= TEN | TWENTY | THIRTY | FORTY | … | NINETY

<distance>           ::= TEN | TWENTY | THIRTY | … | HUNDRED
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Probabilistic Context Free Grammars

• CFGs can be made probabilistic by attaching a 

probability to each production rule

– These probabilities are used in computing the overall 

likelihood of a recognition hypothesis (sequence of 

words) matching the input speech

• Whenever a rule is used, the rule probability is 

applied 
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Context Free Grammars: Another View

• Non-terminals can be seen as functions in programming languages

– Each production rule defines the function body; as a sequence of statements

– Terminals in the rule are like ordinary assignment statements

– A non-terminal within the rule is a call to a function

• Thus, the entire CFG is like a program made up of many functions

– Obviously, program execution can take many paths!

– Each program execution produces a complete sentence
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CFG Based Decoding

• Consider the following simple CFG:

– S is like an overloaded function

• It is also the entire “program”

– The “call tree” on the right shows all 
possible “program execution paths”

• CFG based decoding is equivalent to 
finding out which rules were used in 
what sequence, to produce the spoken 
sentence

– A general algorithm to determine this is 
too complex to describe here

– Instead, we can try to approximate CFGs 
by FSGs

S ::= aSb |  c

S

a S b c

a S b c

a S b c

a S b c

infinitely deep
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Approximating a CFG by an FSG

• Advantage: back in familiar, efficient decoding territory

• Disadvantage: depends on the approximation method

– In some, the FSG will allow illegal sentences to become legal

– In others, the FSG will disallow some legal sentences

• For practical applications, the approximations can be 

made to work nicely

– Many applications need only FSGs to begin with

– The errors committed by the approximate FSG can be made 

extremely rare
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FSG Approximation to CFGs:

• Consider a rule:  X ::= aBcD, where a and c are terminal 
symbols (words), and B and D are non-terminals

• We can create the following FSG for the rule:

• It should be clear that when the above construction is 
applied to all the rules of the CFG, we end up with an FSG

a B c D

Rules for B

e

e

e

e

e

e

e

e

e

e

Rules for D

start-X end-X

Non-terminal transitions eliminated
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CFG to FSG Example

• Let’s convert the following CFG to FSG:

– Assume the rules have probabilities p1, p2 and p3 (p1+p2+p3=1)

• We get the FSG below:

S ::= aSb |  c |  e

a b

c

e

S

ee

e (p1) e

start final

S ::= e

S ::= c

S ::= aSb

e (p1)
e (p2)

e (p3)

e (p2)

e (p3)
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FSG Approximation to CFGs:

• We can construct an FSG from a CFG as follows:

– Take each production rule in the CFG as a sequence of state 

transitions, one transition per symbol in the rule

• The first state is the start state of the rule, and the last the final state of the rule

– Replace each non-terminal in the sequence with null transitions to the 

start, and from the end of each rule for that non-terminal

• (The empty string e is considered to be a terminal symbol)

– Make the start states of all the rules for the distinguished CFG symbol S to 

be the start states of the FSG

– Similarly, make the final states of the rules for S to be the final states of the 

FSG

• Or, add new start and final states with null transitions to and from the above

• Since the CFG has a finite set of rules of finite length, and we remove 

all non-terminals, we end up with a plain FSG
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Why is this FSG an Approximation?

• To exactly follow the rules of the CFG, when a non-terminal is replaced 

by null transitions to and from its rules, we would need to ensure that 

for every transition to a rule, there is a return from the rule

• In the created FSG, there is no way to enforce the above requirement

– The FSG behavior is governed entirely by its current state, and not how it 

got there

– To implement the above requirement, the FSG would have to remember 

that it took a particular transition a long time ago

• The constructed FSG allows all sentences of the CFG, since the original 

paths are all preserved

• Unfortunately, it also allows illegal paths to become legal

• Q: How are the CFG and FSG on the last slide different?
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Another FSG Approximation to CFGs

• Another possibility is to eliminate the root of the CFG 
decoding problem: infinite recursion
– In most practical applications, one rarely sees recursion depths 

beyond some small number

• So, we can arbitrarily declare that recursion cannot proceed 
beyond a certain depth

• Consider the function call analogy and the “call tree example”

• We only need to explore a finite sized tree

• A finite sized search problem can be turned into an FSG!
– Proof?  Construction algorithm?

• This FSG will never accept an illegal sentence, but it may 

reject legal ones (those that exceed the recursion depth limit)
– The deeper the limit, the less the chance of false rejection
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FSG Optimization

• In the first version, the FSG created had a large number of null 

transitions!

• We can see from manual examination that many are redundant

• Blindly using this FSG to create a search trellis would be 

highly inefficient

• We can use FSG optimization algorithms to reduce its 

complexity

– It is possible to eliminate unnecessary (duplicate) states

– To eliminate unnecessary transitions, usually null-transitions

• Topic of discussion for another day!
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The Language Weight

• According to the basic speech recognition equation, we wish to 

maximize:  P(X|W) P(W) over all word sequences W

• In practice, it has been found that left in this form, the 

language model (i.e. P(W)) has little effect on accuracy

• Empirically, it has been found necessary to maximize: 

P(X|W)P(W)k, for some k>1

– k is known as the language weight

– Typical values of k are around 10, though they range rather widely

– When using log-likelihoods, the LM log-likelihoods get multiplied 

by k
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Optimizing Language Weight

• The optimum setting for the language weight is determined empirically, 

by trying a range of values on some test data

– This process is referred to as tuning the language weight

• When attempting such tuning, one should keep in mind that changing 

the language weight changes the range of total path likelihoods

• As a result, beam pruning behavior gets affected

– As language weight is increased, the LM component of the path scores 

decreases more quickly (pk, where p<1 and k>1)

– If the beam pruning threshold is kept constant, more paths fall under the 

pruning threshold and get pruned

• Thus, it is necessary to adjust the beam pruning thresholds while 

changing language weight

– Makes the tuning process a little more “interesting”
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Optimizing Language Weight: Example

• No. of active states, and word error rate variation with language weight (20k word task)

• Relaxing pruning improves WER at LW=14.5 to 14.8%
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Rationale for the Language Weight

• Basically an ad hoc technique, but there are arguments for it:

• HMM state output probabilities are usually density values, which 

can range very widely (i.e., not restricted to the range 0..1)

• LM probabilities, on the other hand, are true probabilities ( < 1.0)

• Second, acoustic likelihoods are computed on a frame-by-frame 

basis as though the frames were completely independent of each 

other

– Thus, the acoustic likelihoods tend to be either widely under or over 

estimated

• In combination, the effect is that the dynamic range of acoustic 

likelihoods far exceeds that of the LM

• The language weight is needed to counter this imbalance between 

the range of the two scores
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CFG Support in ASR Systems and SRGS

• Most commercial systems provide some support for CFG 

grammars

• SRGS (Speech Recognition Grammar Specification) is a 

proposed W3C standard

– Specifies the format in which CFG grammars may be input to 

a speech recognizer

• In addition to the plain grammar specification, SRGS 

allows the CFGs to perform a few other functions

• For details: http://www.w3.org/TR/speech-grammar/
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Summary

• Language models are essential for recognition accuracy

• LMs can be introduced into the decoding framework using the standard speech equation

• The formula for P(w1, w2, w3, … , wn) naturally leads to the notion of N-gram grammars 

for language models

• However, N-gram grammars have to be trained

• When little or no training data are available, one can fall back on structured grammars 

based on expert knowledge

• Structured grammars are of two common types: finite state (FSG) and context free 

(CFG)

• CFGs obtain their power and appeal from their ability to function as building blocks

• FSGs can be easily converted into sentence HMM for decoding

• CFGs are much harder to decode exactly

• However, CFGs can be approximated by FSGs by making some assumptions
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Looking Forward

• It is hard to construct structured grammars for 

large vocabulary applications

• Our next focus will be large vocabulary and its 

implications for all aspects of modeling and 

decoding strategies



79

Backup slides
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The Fundamental Speech Recognition Problem

• Fundamental problem of speech recognition:
Given input speech X = x1, x2, x3, … , xT, find the most likely word 

sequence W = w1, w2, w3, … , wn

i.e. argmaxW P(W|X)

– By Bayes’ rule: P(W|X) = P(X|W)P(W)/P(X)

– So, the above expression becomes

argmaxW P(W|X) = argmaxW (P(X|W) P(W)) / P(X)

– For finding W that maximizes P(W|X), X is constant and P(X) can be 
ignored (remember, X is the given speech input)

– Thus, we are finally left with the fundamental equation:

argmaxW P(W|X) = argmaxW (P(X|W) P(W))

P(W|X) = P(W,X)/P(X) P(X|W) = 
P(X,W)/P(W) P(W|X)P(X) = 
P(X|W)P(W)



81

Breaking Down the Fundamental Equation

argmaxW P(W|X) = argmaxW (P(X|W) P(W))

• P(W|X) = posterior probability of the word sequence W given 
the speech signal X
– We wish to find the W with maximum posterior probability

• P(X|W) = acoustic likelihood of the word sequence W
producing the observed speech signal X
– This is obtained from the acoustic model (forward algorithm)

• P(W) = language model probability of the word sequence W
– We now have the desired formalism for using LMs

– But, what is P(W)?
• E.g. what is P(“speech recognition is so much fun”)?
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Interpretation of  P(W)

• We can rewrite P(w1, w2, w3, … , wn) as:

= P(w1) * P(w1w2)/P(w1) * P(w1w2w3)/P(w1w2) * P(w1w2w3w4)/P(w1w2w3) …

= P(w1) P(w2|w1) P(w3|w1,w2) P(w4|w1, w2, w3) …

(Use the rule from probability theory: P(a|b) = P(a,b) / 

P(b) )

P(speech)
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Interpretation of  P(W)

• How can we use this in decoding?

– Whenever we consider extending a partial path 

w1,w2,w3, … ,wk by another word wk+1, we 

incorporate the probability

P(wk+1|w1, w2, w3, … , wk) into the extended path 

likelihood

– At every cross-word transition in Viterbi search

speech recognition is so much fun

P(speech at 
start of 
sentence)

P(recognition | speech)

P(is | speech recognition)

P(so | speech recognition is)

P(much | speech recognition is so)

P(fun | speech recognition is so much)

P(ending
sentence 

here)
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Language Model State

• In the expression P(wk+1|w1, w2, w3, … , wk), the sequence 
w1, w2, w3, … , wk is known as the LM state, history, or 
grammar state
– Like HMM states, we have LM states

• Building an LM implies computing probability values for 
all possible words, all possible LM states!

• We can estimate these distributions from LM training data

• However, as k (the history length) grows larger, the 
number of possible histories grows exponentially
– Even for a small vocabulary of 10 words, a 10-word history 

contains 1010 possibilities!

– Hopeless to try to estimate or store P(wi|history) for 1010

histories
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Language Model State Approximation

• Hence, histories (LM states) are often approximated by 
truncating them to a few most recent words:
– E.g. only the most recent one-word history:

P(wk+1|w1, w2, w3, … , wk) ~ P(wk+1|wk)

e.g: P(fun | speech recognition is so much) ~ P(fun | much)

– These are 2-gram or bigram grammars

– Or, the most recent two-word history:

P(wk+1|w1, w2, w3, … , wk) ~ P(wk+1|wk-1, wk)

e.g: P(fun | speech recognition is so much) ~ P(fun | so much)

– These are 3-gram or trigram grammars

– And there are 4-grams, 5-grams etc.

• No longer an exact Bayesian solution, but efficient!
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Building N-gram Grammars

• N-gram LMs are suited for large vocabulary 

applications

• However, N-gram LMs require training 

– A large training corpus provides estimates of the 

history conditional probabilities (i.e. bigram and 

trigram probabilities)

• We will study these later in the course
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Finite State and Context Free 

Grammars
• For many applications:

– Either no training data exists, or

– The allowed set of sentences is much more structured

and can be described concisely from expert 

knowledge

• Grammar states can be explicitly specified 

without being implicitly defined by histories

• Most frequenty used grammar types:

– Finite state and context free grammars (FSGs and 

CFGs)
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Trellis Example


