
Design and Implementation of

Speech Recognition Systems

Spring 2012

Class 13: Grammars

4 Mar 2012

1

Recap: HMMs are Generalized Templates

• A set of “states”

– A distance function associated with each state

• A set of transitions

– Transition-specific penalties

2

T11 T22 T33

T12 T23 d1(x) d2(x) d3(x)

• An HMM for each word

• Score incoming speech against each HMM

• Pick word whose HMM scores best

– Best == lowest cost

– Best == highest score

– Best == highest probability

Recap: Isolated word recognition with

HMMs

3

HMM for word2HMM for word1

Recap: Recognizing word sequences

• Train HMMs for words

• Create HMM for each word sequence

– Recognize as in isolated word case

4

Combined HMM for the sequence word 1 word 2

Recap: Recognizing word sequences

• Create word graph HMM representing all word

sequences

– Word sequence obtained from best state sequence

5

delete

file

all

files

open

edit

close
marked

6

Motivation

• Prior to this, we have looked at speech recognition without

worrying about language structure

– i.e. we’ve treated all word sequences as being equally likely

– But this is rarely the case

• Using language knowledge is crucial for recognition accuracy

– Humans use a tremendous amount of context to “fill in holes” in

what they hear, and to disambiguate between confusable words

– Speech recognizers should do so too!

• Such knowledge used in a decoder is called a language model

(LM)

7

Impact of Language Models on ASR

• Example with a 20K word vocabulary system:

– Without an LM (“any word is equally likely” model):

AS COME ADD TAE ASIAN IN THE ME AGE OLE FUND IS MS. GROWS
INCREASING ME IN TENTS MAR PLAYERS AND INDUSTRY A PAIR WILLING TO
SACRIFICE IN TAE GRITTY IN THAN ANA IF PERFORMANCE

– With an appropriate LM (“knows” what word
sequences make sense):

AS COMPETITION IN THE MUTUAL FUND BUSINESS GROWS INCREASINGLY
INTENSE MORE PLAYERS IN THE INDUSTRY APPEAR WILLING TO SACRIFICE
INTEGRITY IN THE NAME OF PERFORMANCE

8

Syntax and Semantics

• However, human knowledge about context is far

too rich to capture in a formal model

– In particular, humans rely on meaning

• Speech recognizers only use models relating to

word sequences

– i.e. focus on syntax rather than semantics

9

Importance of Semantics

• From Spoken Language Processing, by Huang, Acero and
Hon:

– Normal language, 5K word vocabulary:
• ASR: 4.5% word error rate (WER)

• Humans: 0.9% WER

– Synthetic language generated from a trigram LM, 20K word
vocabulary:
• Example: BECAUSE OF COURSE AND IT IS IN LIFE AND …

• ASR: 4.4% WER

• Humans: 7.6% WER

– Deprived of context, humans flounder just as badly, or worse

• Still, we will focus only on the syntactic level

10

Types of LMs

• We will use grammars or LMs to constrain the search algorithm

• This gives the decoder a bias, so that not all word sequences are equally

likely

• Our topics include:

– Finite state grammars (FSGs)

– Context free grammars (CFGs)

– Decoding algorithms using them

• These are suitable for small/medium vocabulary systems, and highly

structured systems

• For large vocabulary applications, we use N-gram LMs, which will be

covered later

11

Finite State Grammar Examples

• Three simple finite state grammars (FSGs):

first

second

third

thirty-first

january

february

march

december

sunday

monday

tuesday

saturday

Day of week Date in month Month

…… …

12

A More Complex Example

• A robot control application:

– TURN 10 DEGREES CLOCKWISE

– TURN 30 DEGREES ANTI CLOCKWISE

– GO 10 METERS

– GO 50 CENTI METERS

– Allowed angles: 10 20 30 40 50 60 70 80 90 (clk/anticlk)

– Allowed distances: 10 20 30 40 50 60 70 80 90 100 (m/cm)

• Vocabulary of this application = 17 words:

– TURN DEGREES CLOCKWISE ANTI

GO METERS CENTI and TEN TWENTY … HUNDRED

– Assume we have word HMMs for all 17 words

• How can we build a continuous speech recognizer for this application?

13

A More Complex Example

• One possibility: Build an “any word
can follow any word” sentence
HMM using the word HMMs

• Allows many word sequences that
simply do not make any sense!

– The recognizer would search through
many meaningless paths

– Greater chance of misrecognitions

• Must tell the system about the legal
set of sentences

• We do this using an FSG

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf

ROBOT 0 GRAPH

14

Robot Control FSG (ROBOT1)

ten

twenty

ninety

degrees

go
ten

twenty
meters

e

start
final

hundred

LM states

…

… anti

clockwiseturn e

centi

e

S1

S2

S3

S4 S5

S9

S6
S7 S8

NOTE: WORDS ARE ON EDGES

15

Elements of Finite State Grammars

• FSGs are defined by the following (very much like HMMs):

– A finite set of states

• These are generically called LM states

– One or more of the states are initial or start states

– One or more of the states are terminal or final states

– Transitions between states, optionally labeled with words

• The words are said to be emitted by those transitions

• Unlabelled transitions are called null or e transitions

– Transitions have probabilities associated with them, as usual

• All transitions out of a state without an explicit transition probability are assumed to be equally

likely

• Any path from a start state to a final state emits a legal word sequence (called a

sentence)

• The set of all possible sentences produced by the FSG is called its language

16

The All-Word Model

• Is the “any word can follow any word” model

also an FSG?

(ROBOT0)

17

Decoding with Finite State Grammars

• How can we incorporate our ROBOT1 FSG into

the Viterbi decoding scheme?

18

Decoding with Finite State Grammars

• Construct a sentence HMM from the given FSG

– Replace edges in the FGS with the HMMs for words

– We are now in familiar territory

• Apply the standard time synchronous Viterbi search

– Only modification needed: need to distinguish

between LM states (see later)

• First, how do we construct the sentence HMM

for an FSG?

19

Sentence HMMs from FSGs

• To construct a sentence HMM, using word HMMs, we will
assume each word HMM has:
– Exactly one non-emitting start and one non-emitting final state

• Replace each FSG transition by a sentence HMM fragment:

w

A B BA
P(w|A)

P(w|A)

Non-emitting states created to represent FSG states

HMM for w

Sentence HMM fragmentFSG transition

e

A B BAP(e|A) P(e|A)

start final

e

20

Sentence HMMs from FSGs (contd.)

• Every FSG state becomes a non-emitting state in

the sentence HMM

• Every FSG transition is replaced by a sentence

HMM fragment as shown previously

• Start and final states of sentence HMM = start

and final states of FSG

21

Robot Control (ROBOT1) Sentence HMM

• The robot control FSG ROBOT1 becomes this sentence HMM:

turn

ten

twenty
degrees

go
ten

twenty

meters

But what about silence?

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9

22

Sentence HMMs from FSGs (contd.)

• People may pause between words

– Unpredictably

• Solution: Add optional silence HMM at each
sentence HMM state:

HMM for silence

Sentence HMM fragment

Sentence
HMM state

23

ROBOT1 with Optional Silences

turn

ten

twenty
degrees

go
ten

twenty

meters

silence

silence

Silence HMM not
shown at all states

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9

24

Trellis Construction for ROBOT0

• How many rows does a

trellis constructed from

ROBOT0 sentence

HMM have?

– Assume 3 emitting

states + 1 non-emitting

start state + 1 non-

emitting final state, for

each word HMM

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf

25

Trellis Construction for ROBOT0

• What are the cross-word

transitions in the trellis?

– (More accurately, word-exit

and word-entry transitions)

turn

degrees

anti

clockwise

go

centi

hundred

meters

ten

…

twenty

Ss Sf

26

ROBOT0 Cross Word Transitions
tu

rn
an

ti
cl

o
ck

w
is

e
go

d
eg

re
e

s
m

et
er

s
te

n
h

u
n

d
re

d
… …

ce
n

ti

Time = t t+1

Sf

Ss

From final
states of all
word HMMs
to Sf

Sf back to Ss

From Ss to start
states of all
word HMMs

t+2

Sf

Ss

27

ROBOT0 Cross Word Transitions

• A portion of trellis shown between

time t and t+2

• Similar Transitions happen from final

states of all 17 words to start states of

all 17 words

• Non-emitting states shown “between

frames”

– Order them as follows:

• Find all null state sequences

• Make sure there are no cycles

• Order them by dependency

• Other trellis details not shown

Time = t t+1Sf

Ss

te
n

go

t+2Sf

Ss

… …

… …

28

Trellis Construction for ROBOT1

• How many rows does a trellis constructed from

ROBOT1 sentence HMM have?

– Assume 3 emitting states + 1 non-emitting start state

+ 1 non-emitting final state, for each word HMM, as

before

29

ROBOT1 Sentence HMM

turn

ten

twenty
degrees

go
ten

twenty

meters

silence

silence

S6

ninety

hundred

…
…

anti

clockwise

centi

S2

S1

S3 S4

S5

S7

S8

S9

30

Trellis Construction for ROBOT1

• No. of trellis rows = No. of states in sentence HMM

– 26 x 5 word HMM states

• Note: words “ten” through “ninety” have two copies since they occur

between different FSG states! (More on this later)

– The 9 FSG states become sentence HMM non-emitting states

– 9 x 3 silence HMM states, one at each FSG state

– = 130 + 9 + 27 = 166 states or 166 rows

• Often it is possible to reduce the state set, but we won’t worry

about that now

• What about word exit and entry transitions?

31

ROBOT1 Cross Word Transitions

• A portion of trellis shown

between time t and t+2

• Note the FSG-constrained

cross word transitions; no

longer fully connected

• Note there are two

instances of “ten”!

– From different portions of

the graph

Time = t

S3

te
n S7

d
eg

re
es

te
n

ce
n

ti
m

et
er

t+1

S8

S3

S7

t+2

S8

32

Words and Word Instances

• The previous example brings forth an important

point

– FSG states (LM states in general) are distinct, and

need to be preserved during decoding

– If the same word is emitted by two different

transitions (i.e. either the source or destination states

are different), there are actually two copies of the

word HMM in the sentence HMM

33

Creation of Application FSGs

• While FSGs can be trained from training data, they can be easily

handcrafted from prior knowledge of expected inputs

– Suitable for situations where little or no training data available

– Small to medium vocabulary applications with well structured dialog

• Example applications:

– Command and control (e.g. robot control or GUI control)

– Form filling (e.g. making a train reservation)

• Constraints imposed by an FSG lead to very efficient search

implementation

– FSGs rules out many improbable or illegal word sequences outright

– Parts of the full NxT search trellis are a priori ruled out

34

Example Application: A Reading Tutor

• Project LISTEN: A reading tutor for children

learning to read

– (http://www.cs.cmu.edu/~listen)

http://www.cs.cmu.edu/~listen

35

Example Application: Reading Tutor

• A child reads a story aloud, one sentence at a time

• The automated tutor “listens” to the child and tries to

help if it has any difficulty

– Pausing too long at a word

– Misreading a word

– Skipping a word

 The child should be allowed to have “normal” reading behavior

 Repeat a word or phrase, or the entire sentence

 Partially pronounce a word one or more times before reading it correctly

 Hence, the tutor should account for both normal and incorrect reading

 We do this by building an FSG for the current sentence, as follows

36

Example Application: Reading Tutor

• For each sentence, the tutor builds a new FSG

• Let’s say the current sentence is:
– ONCE UPON A TIME A BEAUTIFUL PRINCESS …

• First we have the “backbone” of the FSG:
– The backbone models straight, correct reading

• (Only part of the FSG backbone is shown)

– FSG states mark positions in text

ONCE UPON A TIME A …

37

Example Application: Reading Tutor

• We add backward null transitions to allow
repetitions
– Models jumps back to anywhere in the text

– It is not necessary to add long backward transitions!

eeeee

ONCE UPON A TIME A

38

Example Application: Reading Tutor

• We add truncated word models to allow partial reading of
a word (shown with an _; e.g. ON_)
– There may be more than one truncated form; only one is

shown

– Partial reading is assumed to mean the child is going to
attempt reading the word again, so we do not change state

– Short words do not have truncated models

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

39

Example Application: Reading Tutor

• We add transitions parallel to each correct word, to model

misreading, labeled with a garbage model (shown as ???)

– How we obtain the garbage model is not important right now

– It essentially models any unexpected speech; e.g.

• Misreading, other than the truncated forms

• Talking to someone else

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???

40

Example Application: Reading Tutor

• We add forward null transitions to model one or

more words being skipped

– It is not necessary to add long forward transitions!

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???

e e e e e

41

Example Application: Reading Tutor

• Not to forget! We add optional silences between words

– Silence transitions (labeled <sil>) from a state to itself

• If the child pauses between words, we should not change state

• Finally, we add transition probabilities estimated from
actual data recorded with children using the reading tutor

eeeee

ONCE UPON A TIME A

ON_ UP_ TI_

??? ??? ??? ??? ???

e e e e e

<sil> <sil> <sil> <sil> <sil> <sil>

42

Example Application: Reading Tutor

• The FSG is crafted from an “expert’s” mental model of how a child

might read through text

• The FSG does not model the student getting stuck (too long a silence)

– There is no good way to model durations with HMMs or FSGs

– Instead, the application specifically uses word segmentation information to

determine if too long a silence has elapsed

• The application creates a new FSG for each new sentence, and destroys

old ones

• Finally, the FSG module even allows dynamic fine-tuning of transition

probabilities and modifying the FSG start state

– To allow the child continuing from the middle of the sentence after being

helped

– To adapt to a child’s changing reading behavior

43

FSG Representation

• A graphical representation is perfect for human

visualization of the system

• However, difficult to communicate to a speech

recognizer!

– Need a textual representation

– Two possibilities: tabular, or rule-based

• Commonly used by most real ASR packages that support

FSGs

44

Tabular FSG Representation Example

• Example FSG from Sphinx-2 / Sphinx-3

FSG_BEGIN

NUM_STATES 5

START_STATE 0

FINAL_STATE 4

TRANSITION 0 1 0.9 ONCE

TRANSITION 0 0 0.01 ONCE

TRANSITION 1 2 0.9 UPON

TRANSITION 1 1 0.01 UPON

TRANSITION 2 3 0.9 A

TRANSITION 2 2 0.01 A

TRANSITION 3 4 0.9 TIME

TRANSITION 3 3 0.01 TIME

TRANSITION 0 1 0.01

TRANSITION 1 2 0.01

TRANSITION 2 3 0.01

TRANSITION 3 4 0.01

TRANSITION 1 0 0.017

TRANSITION 2 0 0.017

TRANSITION 3 0 0.017

TRANSITION 4 0 0.017

TRANSITION 2 1 0.01

TRANSITION 3 2 0.01

TRANSITION 4 3 0.01

FSG_END

Table of transitions

45

Tabular FSG Representation

• Straightforward conversion from graphical to tabular

form:

– List of states (e.g. states may be named or numbered)

• E.g. Sphinx-2 uses state numbers

– List of transitions, of the form:

Origin-state, destination state, emitted word, transition probability

• Emitted word is optional; if omitted, implies a null transition

• Transition probability is optional

– All unspecified transition probabilities from a given state are

equally likely

– Set of start states

– Set of final states

46

Rule-Based FSG Representation

• Before we talk about this, let us consider

something else first

47

Recursive Transition Networks

• What happens if we try to “compose” an FSG using other FSGs as its

components?

– Key idea: A transition in an FSG-like model can be labeled with an entire

FSG, instead of a single word

• When the transition is taken, it can emit any one of the sentences in the language of

the label FSG

• Such networks of nested grammars are called recursive transition

networks (RTNs)

– Grammar definitions can be recursive

• But first, let us consider such composition without any recursion

– Arbitrary networks composed in this way, that include recursion, turn out

not to be FSGs at all

48

Nested FSGs

• E.g. here is a <date> FSG:

– Where, <day-of-week>, <date-in-month> and

<month> are the FSGs defined earlier

• Exercise: Include <year> into this specification,

and allow reordering the components

<day-of-week> <date-in-month> <month>

A B C D

49

More Nested FSGs

• Example: Scheduling task
– (Transition labels with <> actually refer to other FSGs)

– The <date> FSG above is further defined in terms of other FSGs

– Thus, FSG references can be nested arbitrarily deeply

• As usual, we have not shown transition probabilities, but they
are nevertheless there, at least implicitly
– E.g. meetings are much more frequent than travels (for most office-

workers!)

<person>meeting

<date>

<city>

with

travel to

on

50

Flattening Composite FSGs for Decoding

• In the case of the above scheduling task FSG, it is

possible to flatten it into a regular FSG (i.e. without

references to other FSGs) simply by embedding the

target FSG in place of an FSG transition

– Very similar to the generation of sentence HMMs from

FSGs

• At this point, the flattened FSG can be directly

converted into the equivalent sentence HMM for

decoding

51

Flattening Composite FSGs for Decoding

• However, not all composite “FSGs” can be

flattened in this manner, if we allow recursion!

– As mentioned, these are really RTNs, and not FSGs

• The grammars represented by them are called

context free grammars (CFGs)

• Let us consider this recursion in some detail

52

Recursion in Grammar Networks

• It is possible for a grammar definition to refer to itself

• Let us consider the following two basic FSGs for robot control:

– <Turn-command> FSG:

– <Move-command> FSG:

turn

ten

twenty

degrees

ninety

…
anti clockwise

e

go

ten

twenty

hundred

… centi meters

e

53

Recursion in Grammar Networks (contd.)

• We can rewrite the original robot control grammar using
the following recursive definition:

– <command-list> grammar:

– <command-list> grammar is defined in terms of itself

<turn-command>

<command-list>

<move-command>

e

54

Recursion in Grammar Networks (contd.)

• Recursion can be direct, or indirect

– <command-list> grammar is defined directly in terms of itself

– Indirect recursion occurs when we can find a sequences of

grammars, F1, F2, F3, ..., Fk, such that:

• F1 refers to F2, F2 refers to F3, etc., and Fk refers back to F1

• Problem with recursion:

– It is not always possible to simply blindly expand a grammar

by plugging in the component grammars in place of transitions

• Leads to infinite expansion

55

A Little Digression: Grammar Libraries

• It is very useful to have a library of reusable grammar

components

– New applications can be designed rapidly by composing together already

existing grammars

• A few examples of common, reusable grammars:

– Date, month, day-of-week, etc.

– Person names and place name (cities, countries, states, roads)

– Book, music or movie titles

– Essentially, almost any list is a potentially reusable FSG

56

RTNs and CFGs

• Clearly, RTNs are a powerful tool for defining

structured grammars

• As mentioned, the class of grammars represented

by such networks is called the class of context

free grammars (CFGs)

– Let us look at some characteristics of CFGs

57

Context Free Grammars

• Compared to FSGs, CFGs are a more powerful

mechanism for defining languages (sets of acceptable

sentences)

– “Powerful” in the sense of imposing more structure on

sentences

– CFGs are a superset of FSGs

• Every language accepted by an FSG is also accepted by some CFG

• But not every CFG has an equivalent FSG

• Human languages are actually fairly close to CFGs, at

least syntactically

– Many applications use them in structured dialogs

58

Context Free Grammars

• What is a CFG?

– Graphically, CFGs are exactly what we have been discussing:

• The class of grammars that can have concepts defined in terms of other

grammars (possibly themselves, recursively)

– They are context free, because the definition of a concept is

the same, regardless of the context in which it occurs

• i.e. independent of where it is embedded in another grammar

• However, unlike FSGs, may not have graphical

representations

• In textual form, CFGs are defined by means of production

rules

59

Context Free Grammars (contd.)

• Formally, a CFG is defined by the following:

– A finite set of terminal symbols (i.e. words in the vocabulary)

– A finite set of non-terminal symbols (the concepts, such as <date>,

<person>, <move-command>, <command-list> etc.

– A special non-terminal, usually S, representing the CFG

– A finite set of production rules

• Each rule defines a non-terminal as a possibly empty sequence of other

symbols, each of which may be a terminal or a non-terminal

– There may be multiple such definitions for the same non-terminal

• The empty rule is usually denoted: <non-terminal> ::= e

• The language generated by a CFG is the set of all sentences of

terminal symbols that can be derived by expanding its special

non-terminal symbol S, using the production rules

60

Why Are CFGs Useful?

• The syntax of large parts of human languages can be
defined using CFGs

– e.g. a simplistic example:
<sentence> ::= <noun-phrase> <verb-phrase>

<noun-phrase> ::= <name> | <article> <noun>

<verb-phrase> ::= <verb> <noun-phrase>

<name> ::= HE | SHE | JOHN | RAJ …

<article> ::= A | AN | THE

<noun> ::= BALL | BAT | FRUIT | BOOK …

<verb> ::= EAT | RUN | HIT | READ …

• Clearly, the language allows non-sensical sentences:
JOHN EAT A BOOK

– But it is syntactically “correct”

– The grammar defines the syntax, not the semantics

61

Robot Control CFG

• Example rules for robot control

• <command-list> is the CFG being defined (= S):

<command-list> ::= <turn-command> | <move-command>

<command-list> ::= <turn-command><command-list>

<command-list> ::= <move-command><command-list>

<turn-command> ::= TURN <degrees> DEGREES <direction>

<direction> ::= clockwise | anti clockwise

<move-command>::= GO <distance> <distance-units>

<distance-units> ::= meters | centi meters

<degrees> ::= TEN | TWENTY | THIRTY | FORTY | … | NINETY

<distance> ::= TEN | TWENTY | THIRTY | … | HUNDRED

62

Probabilistic Context Free Grammars

• CFGs can be made probabilistic by attaching a

probability to each production rule

– These probabilities are used in computing the overall

likelihood of a recognition hypothesis (sequence of

words) matching the input speech

• Whenever a rule is used, the rule probability is

applied

63

Context Free Grammars: Another View

• Non-terminals can be seen as functions in programming languages

– Each production rule defines the function body; as a sequence of statements

– Terminals in the rule are like ordinary assignment statements

– A non-terminal within the rule is a call to a function

• Thus, the entire CFG is like a program made up of many functions

– Obviously, program execution can take many paths!

– Each program execution produces a complete sentence

64

CFG Based Decoding

• Consider the following simple CFG:

– S is like an overloaded function

• It is also the entire “program”

– The “call tree” on the right shows all
possible “program execution paths”

• CFG based decoding is equivalent to
finding out which rules were used in
what sequence, to produce the spoken
sentence

– A general algorithm to determine this is
too complex to describe here

– Instead, we can try to approximate CFGs
by FSGs

S ::= aSb | c

S

a S b c

a S b c

a S b c

a S b c

infinitely deep

65

Approximating a CFG by an FSG

• Advantage: back in familiar, efficient decoding territory

• Disadvantage: depends on the approximation method

– In some, the FSG will allow illegal sentences to become legal

– In others, the FSG will disallow some legal sentences

• For practical applications, the approximations can be

made to work nicely

– Many applications need only FSGs to begin with

– The errors committed by the approximate FSG can be made

extremely rare

66

FSG Approximation to CFGs:

• Consider a rule: X ::= aBcD, where a and c are terminal
symbols (words), and B and D are non-terminals

• We can create the following FSG for the rule:

• It should be clear that when the above construction is
applied to all the rules of the CFG, we end up with an FSG

a B c D

Rules for B

e

e

e

e

e

e

e

e

e

e

Rules for D

start-X end-X

Non-terminal transitions eliminated

67

CFG to FSG Example

• Let’s convert the following CFG to FSG:

– Assume the rules have probabilities p1, p2 and p3 (p1+p2+p3=1)

• We get the FSG below:

S ::= aSb | c | e

a b

c

e

S

ee

e (p1) e

start final

S ::= e

S ::= c

S ::= aSb

e (p1)
e (p2)

e (p3)

e (p2)

e (p3)

68

FSG Approximation to CFGs:

• We can construct an FSG from a CFG as follows:

– Take each production rule in the CFG as a sequence of state

transitions, one transition per symbol in the rule

• The first state is the start state of the rule, and the last the final state of the rule

– Replace each non-terminal in the sequence with null transitions to the

start, and from the end of each rule for that non-terminal

• (The empty string e is considered to be a terminal symbol)

– Make the start states of all the rules for the distinguished CFG symbol S to

be the start states of the FSG

– Similarly, make the final states of the rules for S to be the final states of the

FSG

• Or, add new start and final states with null transitions to and from the above

• Since the CFG has a finite set of rules of finite length, and we remove

all non-terminals, we end up with a plain FSG

69

Why is this FSG an Approximation?

• To exactly follow the rules of the CFG, when a non-terminal is replaced

by null transitions to and from its rules, we would need to ensure that

for every transition to a rule, there is a return from the rule

• In the created FSG, there is no way to enforce the above requirement

– The FSG behavior is governed entirely by its current state, and not how it

got there

– To implement the above requirement, the FSG would have to remember

that it took a particular transition a long time ago

• The constructed FSG allows all sentences of the CFG, since the original

paths are all preserved

• Unfortunately, it also allows illegal paths to become legal

• Q: How are the CFG and FSG on the last slide different?

70

Another FSG Approximation to CFGs

• Another possibility is to eliminate the root of the CFG
decoding problem: infinite recursion
– In most practical applications, one rarely sees recursion depths

beyond some small number

• So, we can arbitrarily declare that recursion cannot proceed
beyond a certain depth

• Consider the function call analogy and the “call tree example”

• We only need to explore a finite sized tree

• A finite sized search problem can be turned into an FSG!
– Proof? Construction algorithm?

• This FSG will never accept an illegal sentence, but it may

reject legal ones (those that exceed the recursion depth limit)
– The deeper the limit, the less the chance of false rejection

71

FSG Optimization

• In the first version, the FSG created had a large number of null

transitions!

• We can see from manual examination that many are redundant

• Blindly using this FSG to create a search trellis would be

highly inefficient

• We can use FSG optimization algorithms to reduce its

complexity

– It is possible to eliminate unnecessary (duplicate) states

– To eliminate unnecessary transitions, usually null-transitions

• Topic of discussion for another day!

72

The Language Weight

• According to the basic speech recognition equation, we wish to

maximize: P(X|W) P(W) over all word sequences W

• In practice, it has been found that left in this form, the

language model (i.e. P(W)) has little effect on accuracy

• Empirically, it has been found necessary to maximize:

P(X|W)P(W)k, for some k>1

– k is known as the language weight

– Typical values of k are around 10, though they range rather widely

– When using log-likelihoods, the LM log-likelihoods get multiplied

by k

73

Optimizing Language Weight

• The optimum setting for the language weight is determined empirically,

by trying a range of values on some test data

– This process is referred to as tuning the language weight

• When attempting such tuning, one should keep in mind that changing

the language weight changes the range of total path likelihoods

• As a result, beam pruning behavior gets affected

– As language weight is increased, the LM component of the path scores

decreases more quickly (pk, where p<1 and k>1)

– If the beam pruning threshold is kept constant, more paths fall under the

pruning threshold and get pruned

• Thus, it is necessary to adjust the beam pruning thresholds while

changing language weight

– Makes the tuning process a little more “interesting”

74

Optimizing Language Weight: Example

• No. of active states, and word error rate variation with language weight (20k word task)

• Relaxing pruning improves WER at LW=14.5 to 14.8%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8.5 10.5 12.5 14.5

Language Weight

#States

0

5

10

15

20

25

8.5 9.5 10.5 11.5 12.5 13.5 14.5

Language Weight

WER(%)

75

Rationale for the Language Weight

• Basically an ad hoc technique, but there are arguments for it:

• HMM state output probabilities are usually density values, which

can range very widely (i.e., not restricted to the range 0..1)

• LM probabilities, on the other hand, are true probabilities (< 1.0)

• Second, acoustic likelihoods are computed on a frame-by-frame

basis as though the frames were completely independent of each

other

– Thus, the acoustic likelihoods tend to be either widely under or over

estimated

• In combination, the effect is that the dynamic range of acoustic

likelihoods far exceeds that of the LM

• The language weight is needed to counter this imbalance between

the range of the two scores

76

CFG Support in ASR Systems and SRGS

• Most commercial systems provide some support for CFG

grammars

• SRGS (Speech Recognition Grammar Specification) is a

proposed W3C standard

– Specifies the format in which CFG grammars may be input to

a speech recognizer

• In addition to the plain grammar specification, SRGS

allows the CFGs to perform a few other functions

• For details: http://www.w3.org/TR/speech-grammar/

77

Summary

• Language models are essential for recognition accuracy

• LMs can be introduced into the decoding framework using the standard speech equation

• The formula for P(w1, w2, w3, … , wn) naturally leads to the notion of N-gram grammars

for language models

• However, N-gram grammars have to be trained

• When little or no training data are available, one can fall back on structured grammars

based on expert knowledge

• Structured grammars are of two common types: finite state (FSG) and context free

(CFG)

• CFGs obtain their power and appeal from their ability to function as building blocks

• FSGs can be easily converted into sentence HMM for decoding

• CFGs are much harder to decode exactly

• However, CFGs can be approximated by FSGs by making some assumptions

78

Looking Forward

• It is hard to construct structured grammars for

large vocabulary applications

• Our next focus will be large vocabulary and its

implications for all aspects of modeling and

decoding strategies

79

Backup slides

80

The Fundamental Speech Recognition Problem

• Fundamental problem of speech recognition:
Given input speech X = x1, x2, x3, … , xT, find the most likely word

sequence W = w1, w2, w3, … , wn

i.e. argmaxW P(W|X)

– By Bayes’ rule: P(W|X) = P(X|W)P(W)/P(X)

– So, the above expression becomes

argmaxW P(W|X) = argmaxW (P(X|W) P(W)) / P(X)

– For finding W that maximizes P(W|X), X is constant and P(X) can be
ignored (remember, X is the given speech input)

– Thus, we are finally left with the fundamental equation:

argmaxW P(W|X) = argmaxW (P(X|W) P(W))

P(W|X) = P(W,X)/P(X) P(X|W) =
P(X,W)/P(W) P(W|X)P(X) =
P(X|W)P(W)

81

Breaking Down the Fundamental Equation

argmaxW P(W|X) = argmaxW (P(X|W) P(W))

• P(W|X) = posterior probability of the word sequence W given
the speech signal X
– We wish to find the W with maximum posterior probability

• P(X|W) = acoustic likelihood of the word sequence W
producing the observed speech signal X
– This is obtained from the acoustic model (forward algorithm)

• P(W) = language model probability of the word sequence W
– We now have the desired formalism for using LMs

– But, what is P(W)?
• E.g. what is P(“speech recognition is so much fun”)?

82

Interpretation of P(W)

• We can rewrite P(w1, w2, w3, … , wn) as:

= P(w1) * P(w1w2)/P(w1) * P(w1w2w3)/P(w1w2) * P(w1w2w3w4)/P(w1w2w3) …

= P(w1) P(w2|w1) P(w3|w1,w2) P(w4|w1, w2, w3) …

(Use the rule from probability theory: P(a|b) = P(a,b) /

P(b))

P(speech)

83

Interpretation of P(W)

• How can we use this in decoding?

– Whenever we consider extending a partial path

w1,w2,w3, … ,wk by another word wk+1, we

incorporate the probability

P(wk+1|w1, w2, w3, … , wk) into the extended path

likelihood

– At every cross-word transition in Viterbi search

speech recognition is so much fun

P(speech at
start of
sentence)

P(recognition | speech)

P(is | speech recognition)

P(so | speech recognition is)

P(much | speech recognition is so)

P(fun | speech recognition is so much)

P(ending
sentence

here)

84

Language Model State

• In the expression P(wk+1|w1, w2, w3, … , wk), the sequence
w1, w2, w3, … , wk is known as the LM state, history, or
grammar state
– Like HMM states, we have LM states

• Building an LM implies computing probability values for
all possible words, all possible LM states!

• We can estimate these distributions from LM training data

• However, as k (the history length) grows larger, the
number of possible histories grows exponentially
– Even for a small vocabulary of 10 words, a 10-word history

contains 1010 possibilities!

– Hopeless to try to estimate or store P(wi|history) for 1010

histories

85

Language Model State Approximation

• Hence, histories (LM states) are often approximated by
truncating them to a few most recent words:
– E.g. only the most recent one-word history:

P(wk+1|w1, w2, w3, … , wk) ~ P(wk+1|wk)

e.g: P(fun | speech recognition is so much) ~ P(fun | much)

– These are 2-gram or bigram grammars

– Or, the most recent two-word history:

P(wk+1|w1, w2, w3, … , wk) ~ P(wk+1|wk-1, wk)

e.g: P(fun | speech recognition is so much) ~ P(fun | so much)

– These are 3-gram or trigram grammars

– And there are 4-grams, 5-grams etc.

• No longer an exact Bayesian solution, but efficient!

86

Building N-gram Grammars

• N-gram LMs are suited for large vocabulary

applications

• However, N-gram LMs require training

– A large training corpus provides estimates of the

history conditional probabilities (i.e. bigram and

trigram probabilities)

• We will study these later in the course

87

Finite State and Context Free

Grammars
• For many applications:

– Either no training data exists, or

– The allowed set of sentences is much more structured

and can be described concisely from expert

knowledge

• Grammar states can be explicitly specified

without being implicitly defined by histories

• Most frequenty used grammar types:

– Finite state and context free grammars (FSGs and

CFGs)

88

Trellis Example

