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Recap: Generalized Templates

• A set of “states”

– A distance function associated with each state

• A set of transitions

– Transition-specific penalties
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• Identical to generalized templates in principle

• “Distance” functions at states replaced by “probability distribution 

function” for state

• Transition “penalties” replaced by transition probabilities

• Maximize probability of observation

– Instead of minimizing cost

• The entire structure may be viewed as one generalization of the 

DTW models we have discussed thus far

Recap: HMMs
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The HMM Process
• The HMM models the process underlying the observations 

as going through a number of states

– E.g., to produce the sound “W”, it first goes through a state where it 

produces the sound “UH”, then goes into a state where it transitions 

from “UH” to “AH”, and finally to a state where it produced “AH”

• The true underlying process is the vocal tract here

– Which roughly goes from the configuration for “UH” to the 

configuration for “AH”

UH

W AH
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HMMs are abstractions
• The states are not directly observed

– Here states of the process are analogous to configurations of the vocal tract that 

produces the signal

– We only hear the speech; we do not see the vocal tract

– i.e. the states are hidden

• The interpretation of states is not always obvious

– The vocal tract actually goes through a continuum of configurations

– The model represents all of these using only a fixed number of states

• The model abstracts the process that generates the data

– The system goes through a finite number of states

– When in any state it can either remain at that state, or go to another with some 

probability

– When at any states it generates observations according to a distribution 

associated with that state
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• A Hidden Markov Model consists of two components

– A state/transition backbone that specifies how many states there are, and how 
they can follow one another

– A set of probability distributions, one for each state, which specifies the 
distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions

– A set of data probability distributions, associated with the states

Markov chain

Data distributions
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Equivalence to DTW templates

• HMM – inference equivalent to DTW modified to use a 

probabilistic function, for the local node or edge “costs” in the 

trellis

– Edges have transition probabilities

– Nodes have output or observation probabilities

• They provide the probability of the observed input

• The output probability may be a Gaussian

– Goal is to find the template with highest probability of matching the 

input

• Probability values associated with transitions and edges are 

called likelihoods
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Likelihoods and Cost: Transition

• Transitions in the HMM have associated probabilities

– P11, P12 etc

• They can be converted to “scores” through a logarithm

– T11 = log(P11)

• Or to “costs” through a negative logarithm

– T11 = -log(P11)

Markov chain

P11 P22 P33

P12 P23

P13

DTW Template

T11 T22 T33

T12 T23

T13
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Likelihoods and Cost: Nodes

• States in the HMM have probability distributions associated with them

– E.g Gaussians

• Whose means and variances have been obtained from the segments associated  

with the node

• Nodes in the trellis have a probabilities associated with them

– Pi(O)

– i is the “state” / template node

– O is the observation associated with any node in the trellis

• Node probabilities may be converted to:

– Scores: Ni(O) = log(Pi(O))

– Or Costs: Ni(O) = - log(Pi(O))

Data distributionsP1(X) P2(X) P3(X)
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Log Likelihoods

• Use probabilities or likelihoods instead of cost

– Scores combines multiplicatively along a path

– Path Score = P1(O1) .P11 .P1(O2) .P12 .P2(O3) .P22 .P2(O4) .P23 .P3(O5) .P23

 Alternately use log probabilities as scores: Ni(O) = log(Pi(O)), T11 = log(P11)

– Scores add as in DTW

– Path Score = N1(O1) + T11 + N1(O2) + T12 + N2(O3) + T22 + N2(O4) + T23 + N3(O5) + T23

• Replace all “Min” operations in DTW by “Max”

• Alternately use negative log probabilities as cost: Ni(O) = log(Pi(O)), T11 = -log(P11)

– Cost adds as in DTW

– Computation remains identical to DTW (with edge costs factored in)

P1(O1) P1(O2)

P2(O3)

P2(O4)

P3(O5)

P11

P12

P22

P23

P34
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• An HMM is a statistical model for a time-varying process

• The process is always in one of a countable number of

• When the process visits in any state, it generates an observation 

by a random draw from a distribution associated with that state

• The process constantly moves from state to state. The 

probability that the process will move to any state is 

determined solely by the current state

– i.e. the dynamics of the process are Markovian

• The entire model represents a probability distribution over the 

sequence of observations

– It has a specific probability of generating any particular sequence

– The probabilities of all possible observation sequences sums to 1

HMM as a statistical model
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HMM assumed to be 

generating data

How an HMM models a process

state 

distributions

state 

sequence

observation

sequence
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HMM Parameters

• The topology of the HMM

– No. of states and allowed transitions

– E.g. here we have 3 states and 

cannot go from the blue state to the 

red

• The transition probabilities

– Often represented as a matrix as 

here

– Tij is the probability that when in 

state i, the process will move to j

• The probability of being at a 

particular state at the first instant

• The state output distributions

0.6
0.4 0.7

0.3

0.5

0.5



















5.05.

3.7.0

04.6.

T

13



HMM state output distributions

• The state output distribution represents the distribution of 

data produced from any state

• In the previous lecture we assume the state output 

distribution to be Gaussian

• Albeit largely in a DTW context

• In reality, the distribution of vectors for any state need not 

be Gaussian

 In the most general case it can be arbitrarily complex

 The Gaussian is only a coarse representation of this distribution

• If we model the output distributions of states better, we can 

expect the model to be a better representation of the data
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Node Score: The Gaussian Distribution

• What does a Gaussian distribution look like?

• For a single (scalar) variable, it is a bell-shaped curve representing the density 
of data around the mean

• Example:

Four different scalar Gaussian 
distributions, with different means and 
variances

The mean is represented by m, and 

variance by s2

m and s are the parameters of the 
Gaussian distribution
(Taken from Wikipedia)

d
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ty
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The Scalar Gaussian Function

• The Gaussian density function (the bell curve) is:

• p(x) is the density function of the variable x, with mean m and 

variance s2

• The attraction of the Gaussian function (regardless of how 

appropriate it is!) comes from how easily the mean and 

variance can be estimated from sample data x1, x2, x3 … xN

– m = Si xi/N

– s2 = Si (xi – m)2/N =Si (xi
2 – m2)/N
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The 2-D Gaussian Distribution

• Speech data are not scalar values, but vectors!

• Needs multi-variate (multi-dimensional) Gaussians

• Figure: A Gaussian for 2-D data
– Shown as a 3-D plot

• Distributions for higher dimensions are tough to 
visualize!
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The Multidimensional Gaussian Distribution

• Instead of variance, the multidimensional Gaussian has a covariance 
matrix

• The multi-dimensional Gaussian distribution of a vector variable x with 
mean m and covariance S is given by:

– where N is the vector dimensionality, and det is the determinant function

• The complexity in a full multi-dimensional Gaussian distribution 
comes from the covariance matrix, which accounts for dependencies
between the dimensions
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The Diagonal Covariance Matrix

• In speech recognition, we frequently assume that the feature vector 

dimensions are all independent of each other

• Result: The covariance matrix is reduced to a diagonal form

– The exponential term becomes, simply:

(Si (xi – mi)2/si
2)/2, i going over all vector dimensions

– The determinant of the diagonal S matrix is easy to compute

• Further, each si
2 (the i-th digonal element in the covariance matrix) is easily 

estimated from xi and mi like a scalar

Full covariance:
all elements are
non-zero

-0.5(x-m)TC-1(x-m)

Diagonal covariance:
off-diagonal elements
are zero

Si (xi-mi)
2 / 2si

2
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Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is 

a weighted combination of several Gaussian distributions

• v is any data vector. P(v) is the probability given to that vector by the 

Gaussian mixture

• K is the number of Gaussians being mixed

• wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is 

its covariance

• The Gaussian mixture distribution is also a distribution

• It is positive everywhere. 

• The total volume under a Gaussian mixture is 1.0.

• Constraint: the mixture weights wi must all be positive and sum to 1
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Gaussian Mixtures

• A Gaussian mixture can represent data distributions 

far better than a simple Gaussian

• The two panels show the histogram of an unknown 

random variable

• The first panel shows how it is modeled by a 

simple Gaussian

• The second panel models the histogram by a 

mixture of two Gaussians

• Caveat: It is hard to know the optimal number of 

Gaussians in a mixture distribution for any random 

variable
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Generating an observation from a 

Gaussian mixture state distribution

First draw the identity of the 

Gaussian from the a priori 

probability distribution of 

Gaussians (mixture weights)

Then draw a vector from

the selected Gaussian
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• The parameters of an HMM with Gaussian mixture 

state distributions are:

–  the set of initial state probabilities for all states

– T the matrix of transition probabilities

– A Gaussian mixture distribution for every state in the 

HMM. The Gaussian mixture for the ith state is 

characterized by

• Ki, the number of Gaussians in the mixture for the ith state

• The set of mixture weights  wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci,j 0 < j <Ki

HMMs with Gaussian mixture state distributions
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Three Basic HMM Problems

• Given an HMM:

– What is the probability that it will generate a 
specific observation sequence

– Given a observation sequence, how do we 
determine which observation was generated from 
which state

• The state segmentation problem

– How do we learn the parameters of the HMM 
from observation sequences 
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Computing the Probability of   an 

Observation Sequence

• Two aspects to producing the observation:

– Progressing through a sequence of states

– Producing observations from these states
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HMM assumed to be 

generating data

Progressing through states

state 

sequence

• The process begins at some state (red) here

• From that state, it makes an allowed transition

– To arrive at the same or any other state

• From that state it makes another allowed transition

– And so on
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Probability that the HMM will follow a 

particular state sequence

• P(s1) is the probability that the process will initially be in 

state s1

• P(si | sj) is the transition probability of moving to state si at 

the next time instant when the system is currently in sj

– Also denoted by Pij earlier

– Related to edge scores in DTW as Tij = -log(P(si | sj))

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...
1 2 3 1 2 1 3 2
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HMM assumed to be 

generating data

Generating Observations from States

state 

distributions

state 

sequence

observation

sequence

• At each time it generates an observation from the 
state it is in at that time
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P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...
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• P(oi | si) is the probability of generating observation 

oi when the system is in state si

• Related to node scores in DTW trellis as:

Ni(O) = -log(P(oi | si))

Probability that the HMM will generate a 

particular observation sequence given a 

state sequence (state sequence known)

Computed from the Gaussian or Gaussian mixture for state s1
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HMM assumed to be 

generating data

Progressing through States and Producing 

Observations

state 

distributions

state 

sequence

observation

sequence

• At each time it produces an observation and makes a 
transition
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Probability that the HMM will generate a 

particular state sequence and, from it, 

generate a particular observation sequence

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3



P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)
1 2 3 1 2 3 1 2 3
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Probability of  Generating an Observation 

Sequence

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.

1 1 2 2 3 3 1 2 1 3 2

P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.

.

1 2 3 1 2 3
P o o o( , , ,...)

1 2 3


• If only the observation is known, the precise state 
sequence followed to produce it is not known

• All possible state sequences must be considered
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Computing it Efficiently

• Explicit summing over all state sequences is not 

efficient

– A very large number of possible state sequences

– For long observation sequences it may be intractable

• Fortunately, we have an efficient algorithm for this: 

The forward algorithm

• At each time, for each state compute the total 

probability of all state sequences that generate 

observations until that time and end at that state
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Illustrative Example

• Consider a generic HMM with 5 states and a “terminating 

state”. We wish to find the probability of the best state 

sequence for an observation sequence assuming it was 

generated by this HMM

– P(si) = 1 for state 1 and 0 for others

– The arrows represent transition for which the probability is not 0. 

P(si | sj) = aij

– We sometimes also represent the state output probability of si as P(ot | 

si) = bi(t) for brevity

91
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Diversion: The HMM Trellis

Feature vectors

(time)


u

s t( , )

S
ta

te
 i
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d
e

x

t-1 t

s

• The trellis is a graphical representation of all possible state sequences through the 

HMM to produce a given observation

– Analogous to the DTW search graph / trellis

• The Y-axis represents HMM states, X axis represents observations

• Edges in trellis represent valid transitions in the HMM over a single time step 

• Every node represents the event of a particular observation being generated from 

a particular state
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The Forward Algorithm
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• u(s,t) is the total probability of ALL state 
sequences that end at state s at time t, and all 
observations until xt
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• u(s,t) can be recursively computed in terms of 

u(s’,t’), the forward probabilities at time t-1 

The Forward Algorithm
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time

S
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 i
n
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e

x

T

• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

• The total probability of the observation is the sum of the 
alpha values at all states


s

u TsTotalprob ),(

The Forward Algorithm
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Problem 2: The state segmentation problem

• Given only a sequence of observations, how do 

we determine which sequence of states was 

followed in producing it?
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HMM assumed to be 

generating data

The HMM as a generator

state 

distributions

state 

sequence

observation

sequence

• The process goes through a series of states and 
produces observations from them
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HMM assumed to be 

generating data

States are Hidden

state 

distributions

state 

sequence

observation

sequence

• The observations do not reveal the underlying state
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HMM assumed to be 

generating data

The state segmentation problem

state 

distributions

state 

sequence

observation

sequence

• State segmentation: Estimate state sequence given 
observations
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Estimating the State Sequence

• Any number of state sequences could have been 

traversed in producing the observation

– In the worst case every state sequence may have produced 

it

• Solution: Identify the most probable state sequence

– The state sequence for which the probability of progressing 

through that sequence and gen    erating the observation 

sequence is maximum

– i.e is maximumP o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3
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• Once again, exhaustive evaluation is impossibly 

expensive

• But once again a simple dynamic-programming 

solution is available

• Needed:

Estimating the state sequence

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 

expensive

• But once again a simple dynamic-programming 

solution is available

• Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3
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The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy ending 

at time t is simply 

– P(?,?,?,?, sx ,sy) = P(?,?,?,?, sx ) P(ot|sy)P(sy|sx)

• The best state sequence that ends with sx,sy at t will 

have a probability equal to the probability of the best 

state sequence ending at t-1 at sx times P(ot|sy)P(sy|sx)

– Since the last term is independent of the state sequence 

leading to sx at t-1
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Trellis

time

• The graph below shows the set of all possible state 
sequences through this HMM in five time intants

t
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The cost of  extending a state sequence

time

94

• The cost of extending a state sequence ending at sx is 

only dependent on the transition from sx to sy, and the 

observation probability at sy

t

sy

sx
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The cost of  extending a state sequence

time

94

• The best path to sy through sx is simply an 

extension of the best path to sx

t

sy

sx
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The Recursion

• The overall best path to sx is an extension of 

the best path to one of the states at the previous 

time

time
t

sy

sx
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The Recursion

• Bestpath prob(sy,t) = 

Best (Bestpath prob(s?,t) * P(sy | s?) * P(ot|sy)) 

time
t

sy

sx
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Finding the best state sequence

• This gives us a simple recursive formulation to find the overall 

best state sequence:

1. The best state sequence X1,i of length 1 ending at state si is 

simply si.

– The probability C(X1,i) of X1,i is P(o1 | si) P(si)

2. The best state sequence of length t+1 is simply given by 

– (argmax Xt,i
C(Xt,i)P(ot+1 | sj) P(sj | si)) si

3. The best overall state sequence for an utterance of length T is 

given by 

argmax Xt,i sj
C(XT,i)

– The state sequence of length T with the highest overall probability
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Finding the best state sequence

• The simple algorithm just presented is called the VITERBI 

algorithm in the literature

– After A.J.Viterbi, who invented this dynamic programming algorithm for a 

completely different purpose: decoding error correction codes!

• The Viterbi algorithm can also be viewed as a breadth-first graph 

search algorithm

– The HMM forms the Y axis of a 2-D plane

• Edge costs of this graph are transition probabilities P(s|s). Node costs are P(o|s)

– A linear graph with every node at a time step forms the X axis

– A trellis is a graph formed as the crossproduct of these two graphs

– The Viterbi algorithm finds the best path through this graph
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Viterbi Search (contd.)

time
Initial state initialized with path-score = P(s1)b1(1)

All other states have score 0 since P(si) = 0 for them 54



Viterbi Search (contd.)

time

State with best path-score

State with path-score < best

State without a valid path-score

P (t)
j

= max [P (t-1) a   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

time

P (t)
j

= max [P (t-1) a   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

time

57



Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
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Viterbi and DTW

• The Viterbi algorithm is identical to the string-

matching procedure used for DTW that we 

saw earlier

• It computes an estimate of the state sequence 

followed in producing the observation

• It also gives us the probability of the best state 

sequence
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Problem3: Training HMM parameters

• We can compute the probability of an observation, 

and the best state sequence given an observation, 

using the HMM’s parameters

• But where do the HMM parameters come from?

• They must be learned from a collection of 

observation sequences

• We have already seen one technique for training 

HMMs: The segmental K-means procedure
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• The entire segmental K-means algorithm:

1. Initialize all parameters

• State means and covariances

• Transition probabilities

• Initial state probabilities

2. Segment all training sequences

3. Reestimate parameters from segmented 

training sequences

4. If not converged, return to 2

Modified segmental K-means AKA 

Viterbi training
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Segmental K-means

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for

all training sequences does not change significantly with further

refinement of the model

Initialize Iterate
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A Better Technique

• The Segmental K-means technique uniquely 

assigns each observation to one state

• However, this is only an estimate and may be 

wrong

• A better approach is to take a “soft” decision

– Assign each observation to every state with a 

probability

67
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Each vector belongs uniquely to a 

segment

T1 T2 T3 T4

MODELS

Training by segmentation: Hard 

Assignment
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Assignment is  fractioned:

Every segment gets a piece of 

every vector

T1 T2 T3 T4

MODELS

Training by segmentation: 

Soft Assignment
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Means and variances are computed

from fractioned vectors
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Where do the fractions come from?
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The “probability” of  a state

• The probability assigned to any state s, for any 

observation xt is the probability that the 

process was at s when it generated xt

• We want to compute

• We will compute                                          first

– This is the probability that the process visited s at 

time t while producing the entire observation

),...,,,)((),...,,|)(( 2121 TT xxxststatePxxxststateP 
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Probability of  Assigning an Observation to a 

State
• The probability that the HMM was in a particular state s when 

generating the observation sequence is the probability that it 

followed a state sequence that passed through s at time t

s

time
t
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Probability of  Assigning an Observation to a 

State
• This can be decomposed into two multiplicative sections

– The section of the lattice leading into state s at time t and the section 

leading out of it

s

time
t
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Probability of  Assigning an Observation to a 

State
• The probability of the red section is the total probability of all 

state sequences ending at state s at time t

– This is simply (s,t)

– Can be computed using the forward algorithm

time
t

s
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The forward algorithm
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 represents the complete current set of HMM parameters
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The Future Paths
• The blue portion represents the probability of all state 

sequences that began at state s at time t

– Like the red portion it can be computed using a backward recursion

time
t
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The Backward Recursion
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Can be recursively 

estimated starting 

from the final time 

time instant

(backward recursion)

time

• u(s,t) is the total probability of ALL state sequences that 
depart from s at time t, and all observations after xt

– (s,T) = 1 at the final time instant for all valid final states
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The complete probability
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Posterior probability of  a state

• The probability that the process was in state s 

at time t, given that we have observed the data 

is obtained by simple normalization

• This term is often referred to as the gamma 

term and denoted by gs,t

P state t s
P state t s

P state t s

s t s t

s t s t
u

u

u
s

u u

u u
s

( ( ) | , )
( , ( ) | )

( , ( ) | )

( , ) ( , )

( , ) ( , )
 



 


 
 

X
X

X






 

 

78



Update Rules

• Once we have the state probabilities (the 

gammas) the update rules are obtained through 

a simple modification of the formulae used for 

segmental K-means

– This new learning algorithm is known as the 

Baum-Welch learning procedure

• Case1:  State output densities are Gaussians
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Update Rules
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• A similar update formula reestimates transition probabilities
• The initial state probabilities P(s) also have a similar update rule
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Case 2: State ouput densities are Gaussian 

Mixtures

• When state output densities are Gaussian 

mixtures, more parameters must be estimated

• The mixture weights ws,i, mean ms,i and 

covariance Cs,i of every Gaussian in the 

distribution of each state must be estimated
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Splitting the Gamma

g  
k s u t u

th

u t
P state t s P k Gaussian state t s x

, , , ,
( ( ) | , ) ( . | ( ) , , )  X

A posteriori probability that the tth vector was generated by the kth Gaussian of state s

Re-estimation of state 

parameters

We split the gamma for any state among all the Gaussians at that state
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Splitting the Gamma among Gaussians
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Updating HMM Parameters

~
,

, , , ,

, , ,

m
g

gk s

k s u t u t
tu

k s u t
tu

x






  ~
~ ~

,

, , , , , , ,

, , ,

C
k s

k s u t u t k s u t k s

T

tu

k s u t
tu

x x


 



g m m

g

~
,

, , ,

, , ,

w
k s

k s u t
tu

j s u t
jtu






g

g

• Note: Every observation contributes to the update of parameter
values of every Gaussian of every state

84



Overall Training Procedure: Single Gaussian 

PDF
• Determine a topology for the HMM

• Initialize all HMM parameters

– Initialize all allowed transitions to have the same 
probability

– Initialize all state output densities to be Gaussians

• We’ll revisit initialization

1. Over all utterances, compute the “sufficient” 
statistics

2. Use update formulae to compute new HMM 
parameters

3. If the overall probability of the training data has not 
converged, return to step 1
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An Implementational Detail

• Step1 computes “buffers” over all utterance

• This can be split and parallelized

– U1, U2 etc. can be processed on separate machines

–
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An Implementational Detail
• Step2 aggregates and adds buffers before updating the models
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An Implementational Detail

• Step2 aggregates and adds buffers before updating the models
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Training for HMMs with Gaussian Mixture

State Output Distributions

• Gaussian Mixtures are obtained by splitting

1. Train an HMM with (single) Gaussian state output 

distributions

2. Split the Gaussian with the largest variance

• Perturb the mean by adding and subtracting a small number

• This gives us 2 Gaussians. Partition the mixture weight of the 

Gaussian into two halves, one for each Gaussian

• A mixture with N Gaussians now becomes a mixture of N+1 

Gaussians

3. Iterate BW to convergence

4. If the desired number of Gaussians not obtained, return to 2
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Splitting a Gaussian

• The mixture weight w for the Gaussian gets shared as 
0.5w by each of the two split Gaussians

m m

me me
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Transition Probabilities

• How about transition probabilities in an HMM?

– “Hard” estimation – by counting, as for templates

– “Soft” estimation – need soft counts
91

T11 T22 T33 

T12 T23 d1(x) d2(x) d3(x)

P11 P22 P33

P12 P23

P13

• We have seen how to compute transition penalties for templates



Transition penalties by counting

• 20 vectors in state 1
– 16 are followed by vectors in state 1

– 4 are followed by vectors in state 2

• P11 = 16/20 = 0.8   T11 = -log(P11) = -log(0.8)

• P12 = 4/20 = 0.2     T12 = -log(P12) = -log(0.2)
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Transitions by counting

• We found the best state sequence for each input

– And counted transitions
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Transitions by counting

• We found the best state sequence for each input

– And counted transitions
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Observation no. 6 contributed one to the count of occurrences of state 1
Observations 6 and 7 contributed one to the count of 
transitions  from state 1 to state 2



Probability of  transitions

• P(transition state I  state J = 

– Count transitions(I,J) /  count instances(I)
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Probability of  transitions

• P(transition state I  state J = 

– Count transitions(I,J) /  count instances(I)

– Count instances(1) = 20
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Probability of  transitions

• P(transition state I  state J = 

– Count transitions(I,J) /  count instances(I)

– Count instances(1) = 20

• Count transitions (1,1) = 16

• P (transition state 1  state 1) = 0.8
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Probability of  transitions

• P(transition state I  state J = 

– Count transitions(I,J) /  count instances(I)

– Count instances(1) = 20

• Count transitions (1,2) = 4

• P (transition state 1  state 2) = 0.2
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Transitions by soft counting

• Each observation pair contributes to every transition

– E.g. observations 6,7 contribute counts to all of the following:

• Transition (11), Transition (12),  Transition(22), 
Transition(23), Transition(33)
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Transitions by soft counting

• Contribution of any transition to the count is the a posteriori 
probability of the count
– This is a fraction

– The fractions for all possible transitions at any time sum to 1
100



Transitions by soft counting

• Probability of a transition is the total 
probability of all paths that include the 
transition
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Transitions by soft counting

• The forward probability of the source state at t
accounts for all incoming paths at time t

– including the t-th observation xt
102

t t+1

u(s , t)



Transitions by soft counting

• The backward probability of the destination state at t+1

accounts for all outgoing paths from the state at time t+1

– NOT including the t+1-th observation xt+1
103

t t+1

u(s’ , t+1)



Transitions by soft counting

• The product of the forward probability of s at t and s’ at t+1 accounts 

for all paths TO state s at t, and all paths FROM s’ at t+1

– But not the transition from s to s’ or the observation at t+1

104
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Transitions by soft counting

• By factoring in the transition probability and observation 

probabilities, the total probability is obtained 

105

t t+1
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From probability to a posteriori probability

• The a posteriori probability of a transition is 

the ratio of its probability to the sum of all 

transitions at the same time
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A posteriori probability of  a transition

• Probability of a transition

107

• A posteriori probability of a transition
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Estimate of  Transition Probabilities

• Numberator is total “soft” count of transitions 

from state s to s’

• Denumberator is total “soft” count of instances 

of state s
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• Arithmetic underflow is a problem

Implementation of  BW: underflow
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• The alpha terms are a recursive product of probability terms

– As t increases, an increasingly greater number probability terms are factored into 

the alpha

• All probability terms are less than 1

– State output probabilities are actually probability densities

– Probability density values can be greater than 1

– On the other hand, for large dimensional data, probability density values are usually 

much less than 1

• With increasing time, alpha values decrease

• Within a few time instants, they underflow to 0

– Every alpha goes to 0 at some time t. All future alphas remain 0

– As the dimensionality of the data increases, alphas goes to 0 faster

probability termsprobability term
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• One method of avoiding underflow is to scale all alphas at each 

time instant

– Scale with respect to the largest alpha to make sure the largest scaled alpha 

is 1.0

– Scale with respect to the sum of the alphas to ensure that all alphas sum to 

1.0

– Scaling constants must be appropriately considered when computing the 

final probabilities of an observation sequence

• An alternate method: Compute alphas and betas in log 

domain

– How?  (Not obvious)

Underflow: Solution
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• Similarly, arithmetic underflow can occur during beta computation

Implementation of  BW: underflow

• The beta terms are also a recursive product of probability terms and can 

underflow

• Underflow can be prevented by

– Scaling: Divide all beta terms by a constant that prevents underflow

– By performing beta computation in the log domain (now? Not obvious..)

– QUESTION: HOW DOES SCALING AFFECT THE ESTIMATION OF 

GAMMA TERMS

– For Gaussian parameter updates?

– For transition probability updates?
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Implementation of  BW: pruning

• The forward backward computation can get very expensive

• Solution: Prune

• Pruning in the forward backward algorithm raises some additional 

issues

• Pruning from forward pass can be employed by backward pass

• Convergence criteria and tests may be affected

• More later

s = pruned out
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Building a recognizer for isolated words

• Now have all necessary components to build 

an HMM-based recognizer for isolated words

– Where each word is spoken by itself in isolation

– E.g. a simple application, where one may either 

say “Yes” or “No” to a recognizer and it must 

recognize what was said
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Isolated Word Recognition with HMMs

• Assuming all words are equally likely

• Training

– Collect a set of “training” recordings for each word

– Compute feature vector sequences for the words

– Train HMMs for each word

• Recognition:

– Compute feature vector sequence for test utterance

– Compute the forward probability of the feature vector sequence 

from the HMM for each word

• Alternately compute the best state sequence probability using Viterbi

– Select the word for which this value is highest
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Issues

• What is the topology to use for the HMMs

– How many states

– What kind of transition structure

– If state output densities have Gaussian Mixtures: 

how many Gaussians?
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HMM Topology
• For speech a left-to-right topology works best

– The “Bakis” topology

– Note that the initial state probability P(s) is 1 for the 1st state and 0 for 

others. This need not be learned

• States may be skipped
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Determining the Number of  States

• How do we know the number of states to use for any 
word?

– We do not, really

– Ideally there should be at least one state for each “basic 
sound” within the word

• Otherwise widely differing sounds may be collapsed into one state

• The average feature vector for that state would be a poor 
representation

• For computational efficiency, the number of states 
should be small

– These two are conflicting requirements, usually solved by 
making some educated guesses
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Determining the Number of  States

• For small vocabularies, it is possible to examine each word in 

detail and arrive at reasonable numbers:

• For larger vocabularies, we may be forced to rely on some ad 

hoc principles

– E.g. proportional to the number of letters in the word

• Works better for some languages than others

• Spanish and Indian languages are good examples where this works as 

almost every letter in a word produces a sound

S O ME TH I NG
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How many Gaussians

• No clear answer for this either

• The number of Gaussians is usually a function 

of the amount of training data available

– Often set by trial and error

– A minimum of 4 Gaussians is usually required for 

reasonable recognition
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Implementation of  BW: initialization of  

alphas and betas

• Initialization for alpha: u(s,1) set to 0 for all 

states except the first state of the model. u(s,1) 

set to 1 for the first state

– All observations must begin at the first state

• Initialization for beta: u(s, T) set to 0 for all states 

except the terminating state. u(s, t) set to 1 for 

this state

– All observations must terminate at the final state
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Initializing State Output Density Parameters

1. Initially only a single Gaussian per state assumed

• Mixtures obtained by splitting Gaussians

2. For Bakis-topology HMMs, a good initialization is the “flat” 

initialization

• Compute the global mean and variance of all feature vectors in all 

training instances of the word

• Initialize all Gaussians (i.e all state output distributions) with this 

mean and variance

• Their means and variances will converge to appropriate values 

automatically with iteration

• Gaussian splitting to compute Gaussian mixtures takes care of the 

rest
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Isolated word recognition: Final thoughts

• All relevant topics covered

– How to compute features from recordings of the words

• We will not explicitly refer to feature computation in future lectures

– How to set HMM topologies for the words

– How to train HMMs for the words

• Baum-Welch algorithm

– How to select the most probable HMM for a test instance

• Computing probabilities using the forward algorithm

• Computing probabilities using the Viterbi algorithm

– Which also gives the state segmentation
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Questions

• ?
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