
N-gram language models for speech 

recognition



Continuous speech recognition

 Compose a graph representing all possible word sequences

 Embed word HMMs in graph to form a “language” HMM

 Viterbi decode over the language HMM
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What about free-form speech

 Graph is non-trivial

 Must express all sentences in the universe

 With appropriate probabilities factored in

 Can we simplify/

the term cepstrum was introduced by Bogert et al and has come to be 

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum 

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 

with the unusual title 

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance 

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an 

echo has an additive 

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power 

spectrum should exhibit a peak at the echo delay 

they called this function the cepstrum

interchanging letters in the word spectrum because 

in general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new 

signal processing technique however only the term cepstrum has been widely used

the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic 

systems for processing signals that have been combined by convolution
<s> </s>

Begin sentence marker End sentence marker



The Bayes classifier for speech recognition

 The Bayes classification rule for speech recognition:

 P(X | w1, w2, …) measures the likelihood that speaking the word sequence 
w1, w2 … could result in the data (feature vector sequence) X

 P(w1, w2 … ) measures the probability that a person might actually utter 
the word sequence w1, w2 ….

 This will be 0 for impossible word sequences

 In theory, the probability term on the right hand side of the equation must 
be computed for every possible word sequence

 It will be 0 for impossible word sequences

 In practice this is often impossible

 There are infinite word sequences
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Acoustic model

For HMM-based systems

this is an HMM

Lanugage model

Speech recognition system solves



 There will be one path for every possible word sequence

 A priori probabilitiy for a word sequence can be applied anywhere along 
the path representing that word sequence.

 It is the structure and size of this graph that determines the feasibility of the 
recognition task 

Bayes’ Classification: A Graphical View

. . . . . . .
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 A factored representation of the a priori probability of a word sequence

P(<s> word1 word2 word3 word4…</s>) = 

P(<s>) P(word1 | <s>) P(word2 | <s> word1) P(word3 | <s> word1 word2)…

 This is a left-to-right factorization of the probability of the word sequence

 The probability of a word is assumed to be dependent only on the words preceding it

 This probability model for word sequences is as accurate as the earlier whole-word-

sequence model, in theory

 It has the advantage that the probabilities of words are applied left to right – this is 

perfect for speech recognition

 P(word1 word2 word3 word4 … ) is incrementally obtained :

A left-to-right model for the langauge

word1

word1 word2

word1 word2 word3

word1 word2 word3 word4

…..



 A priori probabilities for word sequences are spread through the graph

 They are applied on every edge

 This is a much more compact representation of the language than the full 
graph shown earlier

 But is still inifinitely large in size

The left to right model: A Graphical View
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 The N-gram assumption

P(wK | w1,w2,w3,…wK-1) = P(wK | wK-(N-1), wK-(N-2),…,wK-1)

 The probability of a word is assumed to be dependent only on 

the past N-1 words

 For a 4-gram model, the probability that  a person will follow “two 

times two is” with “four” is assumed to be identical to the probability 

that  they will follow “seven times two is” with “four”.

 This is not such a poor assumption

 Surprisingly, the words we speak (or write) at any time are largely 

(but not entirely) dependent on the previous 3-4 words.

Left-to-right language probabilities and the N-gram model



 An N-gram language model is a generative model

 One can generate word sequences randomly from it

 In a good generative model, randomly generated word sequences should 

be similar to word sequences that occur naturally in the language

 Word sequences that are more common in the language should be generated 

more frequently

 Is an N-gram language model a good model?

 If randomly generated word sequences are plausible in the language, it is a 

reasonable model

 If more common word sequences in the language are generated more 

frequently it is a good model

 If the relative frequency of generated word sequences is exactly that in the 

language, it is a perfect model

 Thought exercise: how would you generate word sequences from an N-

gram LM ?

 Clue: Remember that N-gram LMs include the probability of a sentence end 

marker 

The validity of the N-gram assumption



 1-gram LM:

 The and the figure a of interval compared and 

 Involved the a at if states next a a the of producing of too

 In out the digits right the the to of or parameters endpoint to right

 Finding likelihood with find a we see values distribution can the a is

 2-gram LM:

 Give an indication of figure shows the source and human

 Process of most papers deal with an HMM based on the next

 Eight hundred and other data show that in order for simplicity

 From this paper we observe that is not a technique applies to model

 3-gram LM:

 Because in the next experiment shows that a statistical model

 Models have recently been shown that a small amount

 Finding an upper bound on the data on the other experiments have been

 Exact Hessian is not used in the distribution with the sample values  

Examples of sentences synthesized with N-gram LMs



 N-gram models are reasonably good models for the language 

at higher N

 As N increases, they become better models

 For lower N (N=1, N=2), they are not so good as generative 

models

 Nevertheless, they are quite effective for analyzing the 

relative validity of word sequences

 Which of a given set of word sequences is more likely to be valid

 They usually assign higher probabilities to plausible word sequences 

than to implausible ones

 This, and the fact that they are left-to-right (Markov) models 

makes them very popular in speech recognition

 They have found to be the most effective language models for large 

vocabulary speech recognition

N-gram LMs



 By restricting the order of an N-gram LM, the inifinitely 
sized tree-shaped graph representing the language can be 
collapsed into finite-sized graphs.

 Best explained with an example

 Consider a simple 2-word example with the words “Sing” 
and “Song”

 Word sequences are

 Sing

 Sing sing

 Sing song sing

 Sing sing song

 Song

 Song sing sing sing  sing sing song

 ….

 …

 There are  infinite possible sequences

N-gram LMs and compact graphs



sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>
P(</s>|<s>)



 The structure is recursive and can be collapsed

The two-word example as a full tree with a unigram LM
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 The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM
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 The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM
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<s> </s>
rock

star

P(</s> | <s>)

P(star | </s>)

P(the | <s> the)

This is wrong! This would apply the probability

P(the | <s> the) to instances of “the the the”

(for which the correct probability value is

P(the | the the)

 Three word vocabulary “the”, “rock”, “star”

 The graph initially begins with bigrams of <s>

 There are edges from every node to “</s>”, that are not shown

 Trigrams of “<s> the”..
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Trigram representations

P(the | </s>)

P(rock | </s>)



the

 Trigrams for all “<s> word” sequences

 A new instance of every word is required to ensure that the two preceding 
symbols are “<s> word”
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Trigram representations
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This always represents a partial

sequence ending with “rock star”

Any edge coming out of this 

instance of STAR will have the

word pair context “ROCK STAR”

 Each word in the second level represents a specific set of two terminal words in a 
partial word sequence

P(star | star  rock)

P(star | rock rock)

P(star | the rock)
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Edges coming out of this wrongly
connected STAR could have word
pair contexts that are either 
“THE STAR” or “ROCK STAR”.
This is amibiguous. A word cannot have 
incoming edges from two or more 
different words

Trigram representations



 The logic can be extended:

 A trigram decoding structure for a vocabulary of D words 

needs D word instances at the first level and D2 word 

instances at the second level

 Total of D(D+1) word models must be instantiated

 Other, more expensive structures are also possible

 An N-gram decoding structure will need

 D + D2 +D3… DN-1 word instances

 Arcs must be incorporated such that the exit from a word instance 

in the (N-1)th level always represents a word sequence with the 

same trailing sequence of  N-1 words

Generic N-gram representations



 N-gram probabilities must be estimated from data

 Probabilities can be estimated simply by counting words in training text

 E.g. the training corpus has 1000 words in 50 sentences, of which 400 are 
“sing” and 600 are “song”

 count(sing)=400; count(song)=600; count(</s>)=50

 There are a total of 1050 tokens, including the 50 “end-of-sentence” markers

 UNIGRAM MODEL: 

 P(sing) = 400/1050;  P(song) = 600/1050;  P(</s>) = 50/1050

 BIGRAM MODEL: finer counting is needed. For example:

 30 sentences begin with sing, 20 with song

 We have 50 counts of <s>

 P(sing | <s>) = 30/50;   P(song|<s>) = 20/50

 10 sentences end with sing, 40 with song

 P(</s> | sing) = 10/400;  P(</s>|song) = 40/600

 300 instances of sing are followed by sing, 90 are followed by song

 P(sing | sing) = 300/400; P(song | sing) = 90/400;

 500 instances of song are followed by song, 60 by sing

 P(song | song) = 500/600;  P(sing|song) = 60/600

Estimating N-gram probabilities



 Note that “</s>” is considered to be equivalent to a word. The probability 

for “</s>” are counted exactly like that of other words

 For N-gram probabilities, we count not only words, but also word 

sequences of length N

 E.g. we count word sequences of length 2 for bigram LMs, and word 

sequences of length 3 for trigram LMs

 For N-gram probabilities of order N>1, we also count word sequences 

that include the word beginning and word end markers

 E.g. counts of sequences of the kind “<s> wa wb” and “wc wd </s>”

 The N-gram probability of a word wd given a context “wa wb wc” is 

computed as

 P(wd | wa wb wc)  =  Count(wa wb wc wd) / Count(wa wb wc)

 For unigram probabilities the count in the denominator is simply the count of 

all word tokens (except the beginning of sentence marker <s>). We do not 

explicitly compute the probability of P(<s>).

Estimating N-gram probabilities



 Such direct estimation is however not possible in all cases

 If we had only a 1000 words in our vocabulary, there are 1001*1001 
possible bigrams (including the <s> and </s> markers)

 We are unlikely to encounter all 1002001 word pairs in any given corpus 
of training data

 i.e. many of the corresponding bigrams will have 0 count

 However, this does not mean that the bigrams will never occur during 
recognition

 E.g., we may never see “sing sing” in the training corpus

 P(sing | sing) will be estimated as 0

 If a speaker says “sing sing” as part of any word sequence, at least the “sing 
sing” portion of it will never be recognized

 The problem gets worse as the order (N) of the N-gram model increases

 For the 1000 word vocabulary there are more than 109 possible trigrams

 Most of them will never been seen in any training corpus

 Yet they may actually be spoken during recognition

Estimating N-gram probabilities



 We must assign a small non-zero probability to all N-grams 

that were never seen in the training data

 However, this means we will have to reduce the probability 

of other terms, to compensate

 Example:   We see 100 instances of sing, 90 of which are followed by 

sing, and 10 by </s> (the sentence end marker).

 The bigram probabilities computed directly are P(sing|sing) = 90/100, 

P(<s/>|sing) = 10/100

 We never observed sing followed by song.

 Let us attribute a small probability X (X > 0) to P(song|sing)

 But 90/100 + 10/100 + X > 1.0

 To compensate we subtract a value Y from P(sing|sing) and some 

value Z from P(</s>|sing) such that

 P(sing | sing) = 90 / 100 – Y

 P(</s> | sing) = 10 / 100 – Z

 P(sing | sing) + P(</s> | sing) + P(song | sing) = 90/100-Y+10/100-Z+X=1

Discounting



 The reduction of the probability estimates for seen Ngrams, in order to 
assign non-zero probabilities to unseen Ngrams is called discounting

 The process of modifying probability estimates to be more generalizable is 
called smoothing

 Discounting and smoothing techniques:

 Absolute discounting

 Jelinek-Mercer smoothing

 Good Turing discounting

 Other methods

 All discounting techniques follow the same basic principle: they modify 
the counts of Ngrams that are seen in the training data

 The modification usually reduces the counts of seen Ngrams

 The withdrawn counts are reallocated to unseen Ngrams

 Probabilities of seen Ngrams are computed from the modified counts

 The resulting Ngram probabilities are discounted probability estimates

 Non-zero probability estimates are derived for unseen Ngrams, from the 
counts that are reallocated to unseen Ngrams

Discounting and smoothing



 Subtract a constant from all counts

 E.g., we have a vocabulary of K words, w1, w2,w3…wK

 Unigram:

 Count of word wi = C(i)

 Count of end-of-sentence markers (</s>) = Cend

 Total count Ctotal = SiC(i) + Cend

 Discounted Unigram Counts

 Cdiscount(i) = C(i) – e

 Cdiscountend = Cend – e

 Discounted probability for seen words

 P(i) = Cdiscount(i) / Ctotal

 Note that the denominator is the total of the undiscounted counts

 If Ko words are seen in the training corpus, K – Ko words are unseen

 A total count of Koxe, representing a probability Koxe / Ctotal remains 

unaccounted for

 This is distributed among the K – Ko words that were never seen in training

 We will discuss how this distribution is performed later

Absolute Discounting



 Bigrams:  We now have counts of the kind

 Contexts: Count(w1), Count(w2), … , Count(<s>)

 Note <s> is also counted; but it is used only as a context

 Context does not incoroporate </s>

 Word pairs:  Count (<s> w1), Count(<s>,w2),…,Count(<s> </s>),…,

Count(w1 w1), …,Count(w1 </s>) … Count(wK wK), Count(wK </s>)

 Word pairs ending in </s> are also counted

 Discounted counts:

 DiscountedCount(wi wj) = Count(wi wj) – e

 Discounted probability:  

 P(wj | wi) = DiscountedCount(wi wj) / Count(wi)

 Note that the discounted count is used only in the numerator

 For each context wi, the probability Ko(wi)xe / Count(wi) is left over

 Ko(wi) is the number of words that were seen following wi in the training corpus

 Ko(wi)xe / Count(wi) will be distributed over bigrams P(wj | wi), for words wj such 

that the word pair wi wj was never seen in the training data

Absolute Discounting: Higher order N-grams



 Trigrams:  Word triplets and word pair contexts are counted

 Context Counts: Count(<s> w1), Count(<s> w2), …

 Word triplets:  Count (<s> w1w1),…, Count(wK wK, </s>)

 DiscountedCount(wi wj wk) = Count(wi wj wk) – e

 Trigram probabilities are computed as the ratio of discounted 
word triplet counts and undiscounted context counts

 The same procedure can be extended to estimate higher-order 
N-grams

 The value of e: The most common value for e is 1
 However, when the training text is small, this can lead to allocation of 

a disproportionately large fraction of the probability to unseen events

 In these cases, e is set to be smaller than 1.0, e.g. 0.5 or 0.1

 The optimal value of e can also be derived from data
 Via K-fold cross validation

Absolute Discounting



 Split training data into K equal parts

 Create K different groupings of the K parts by holding out one of the K 

parts and merging the rest of the K-1 parts together. The held out part is a 

validation set, and the merged parts form a training set

 This gives us K different partitions of the training data into training and 

validation sets

 For several values of e

 Compute K different language models with each of the K training sets

 Compute the total probability Pvalidation(i) of the ith validation set on the LM 

trained from the ith training set

 Compute the total probability 

Pvalidatione = Pvalidation(1)*Pvalidation(2)**Pvalidation(K)

 Select the e for which Pvalidatione is maximum

 Retrain the LM using the entire training data, using the chosen value of e

K-fold cross validation for estimating e



 Jelinek-Mercer smoothing returns the probability of an N-gram as a weighted 
combination of maximum likelihood N-gram and smoothed N-1 gram 
probabilities

 Psmooth(word | wa wb wc..) is the N-gram probability used during recognition

 The higher order (N-gram) term on the right hand side, PML(word | wa wb wc..) is 
simply a maximum likelihood (counting-based) estimate of P(word | wa wb wc..)

 The lower order ((N-1)-gram term ) Psmooth(word | wb wc..) is recursively obtained 
by interpolation between the ML estimate PML(word | wb wc..) and the smoothed 
estimate for the (N-2)-gram Psmooth(word | wc..)

 All l values lie between 0 and 1

 Unigram probabilities are interpolated with a uniform probability distribution

 The l values must be estimated using held-out data

 A combination of K-fold cross validation and the expectation maximization 
algorithms must be used

 We will not present the details of the learning algorithm in this talk

 Often, an arbitrarily chosen value of l, such as l = 0.5 is also very effective

The Jelinek Mercer Smoothing Technique
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 Zipf’s law: The number of events that occur often is small, 

but the number of events that occur very rarely is very large.

 If n represents the number of times an event occurs in a unit 

interval, the number of events that occur n times per unit time 

is proportional to 1/na, where a is greater than 1

 George Kingsley Zipf originally postulated that a = 1. 

 Later studies have shown that a is 1 + e, where e is slightly greater 

than 0

 Zipf’s law is true for words in a language: the probability of 

occurrence of words starts high and tapers off. A few words 

occur very often while many others occur rarely.

Good-Turing discounting: Zipf’s law



 A plot of the count of counts of words in a training corpus typically looks like this:

Good-Turing discounting

 In keeping with Zipf’s law, the number of words that occur n times in the 

training corpus is typically more than the number of words that occur n+1 

times
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 A plot of the count of counts of words in a training corpus typically looks like this:

Total Probability Mass

 Black line: Count of counts

 Black line value at N = No. of words that occur N times

 Red line:   Total probability mass of all events with that count

 Red line value at 1 = (No. of words that occur once) / Total words

 Red line value at 2 = 2  * (No. of words that occur twice) / Total  words

 Red line value at N = N * (No. of words that occur N times) / Total words
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 A plot of the count of counts of words in a training corpus typically looks like this:

Total Probability Mass

 Red Line

 P(K) =  K * NK / N

 K = No. of times word was seen

 NK is no. of words seen K times

 N: Total words
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 A plot of the count of counts of words in a training corpus typically looks like this:

Good-Turing discounting

 In keeping with Zipf’s law, the number of words that occur n times in the 

training corpus is typically more than the number of words that occur n+1 

times

 The total probability mass of words that occur n times falls slowly

 Surprisingly, the total probability mass of rare words is greater than the total 

probability mass of common words, because of the large number of rare 

words
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Good-Turing discounting

 Good Turing discounting reallocates probabilities

 The total probability mass of all words that occurred n times is 

assigned to words that occurred n-1 times

 The total probability mass of words that occurred once is reallocated 

to words that were never observed in training

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve (Zipf’s law)
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 A plot of the count of counts of words in a training corpus typically looks like this:



Good Turing Discounting

 Assign probability mass of  events seen 2 times to events seen 

once.

 Before discounting:  P(word seen once) =  1 / N

 N = total words

 After discounting:

P(word seen once) = (2*N2 / N) / N1

 N2 is no. of words seen twice

 N1 is no. of words seen once

 P(word seen once) = (2*N2 / N1) / N

 Discounted count for words seen once is: 

 N1,discounted =  (2*N2 / N1)

 Modified probability:  Use discounted count as the count for the word



Good-Turing discounting

 The probability mass curve cannot simply be shifted left directly due to 

two potential problems

 Directly shifting the probability mass curve assigns 0 probability to the 

most frequently occurring words

n=1 2 3 4 5 6 7 8 9 10 11 12 13 14

Count of counts curve

probability mass
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New probability mass

for these words is 0!!



 The count of counts curve is often not continuous

 We may have words that occurred L times, and words that occurred L+2 

times, but none that ocurred L+1 times

 By simply reassigning probability masses backward, words that occurred L 

times are assigned the total probability of words that ocurred L+1 times = 0!

Good-Turing discounting
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No words observed with this count.

Total probability mass here is 0.

L+1L

Discounted probabilities (after left shift)

Look like this!



Good-Turing discounting

 The count of counts curve is smoothed and extrapolated

 Smoothing fills in “holes” – intermediate counts for which the curve went to 0

 Smoothing may also vary the counts of events that were observed

 Extrapolation extends the curve to one step beyond the maximum count 
observed in the data

 Smoothing and extrapolation can be done by linear interpolation and 
extrapolation, or by fitting polynomials or splines

 Probability masses are computed from the smoothed count-of-counts and 
reassigned
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 Step 1: Compute count-of-counts curve

 Let r(i) be the number of words that occurred i times

 Step 2: Smooth and extend count-of-count curve

 Let r’(i) be the smoothed count of the number of words that occurred i times. 

 The total smoothed count of all words that occurred i times is r’(i) * i. 

 We operate entirely with the smoothed counts from here on

Good-Turing discounting
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 Step 3: Reassign the total smoothed counts r’(i)*i to words that occurred i-1
times. 

 reassignedcount(i-1) = r’(i)*i / r’(i-1)

 Step 4: Compute modified total count from smoothed counts

 totalreassignedcount = Si smoothedprobabilitymass(i)

 Step 5: A word w with count i is assigned probability
P(w| context) = reassignedcount(i) / totalreassignedcount

Good-Turing discounting
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 Step 6: Compute a probability for unseen terms!!!!

 A probability mass Pleftover = r’(1)*N1 / totalreassignedcount is left over

 Reminder: r’(1) is the smoothed count of words that occur once

 The left-over probability mass is reassigned to words that were not seen in the 
training corpus

 P(any unseen word) =  Pleftover / Nunseen

Good-Turing discounting
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 UNIGRAMS:

 The count-of-counts curve is derived by counting the words (including </s>) 

in the training corpus

 The count-of-counts curve is smoothed and extrapolated

 Word probabilities are computed for observed words are computed from the 

smoothed, reassigned counts

 The left-over probability is reassigned to unseen words

 BIGRAMS:

 For each word context W, (where W can also be <s>), the same procedure 

given above is followed: the count-of-counts for all words that occur 

immediately after W is obtained, smoothed and extrapolated, and bigram 

probabilities for words seen after W are computed.

 The left-over probability is reassigned to the bigram probabilities of words 

that were never seen following W in the training corpus

 Higher order N-grams: The same procedure is followed for every word 

context W1 W2… WN-1

Good-Turing estimation of LM probabilities



 All discounting techniques result in a some left-over 

probability to reassign to unseen words and N-grams

 For unigrams, this probability is uniformly distributed over 

all unseen words

 The vocabulary for the LM must be prespecified

 The probability will be reassigned uniformly to words from this 

vocabulary that were not seen in the training corpus

 For higher-order N-grams, the reassignment is done 

differently

 Based on lower-order N-gram, i.e. (N-1)-gram probabilities

 The process by which probabilities for unseen N-grams is computed 

from (N-1)-gram probabilities is referred to as “backoff”

Reassigning left-over probability to unseen words



 UNIGRAMS: A probability mass Pleftover = r’(1)*N1 / totalreassignedcount is left 
over and distributed uniformly over unseen words

 P(any unseen word) =  Pleftover / Nunseen

 BIGRAMS:  We only count over all words in a particular context
 E.g. all words that followed word “w3”

 We count words and smooth word counts only over this set (e.g. words that followed w3)

 We can use the same discounting principle as above to compute probabilities of unseen 
bigrams of w3 (i.e bigram probabilities that a word will follow w3, although it was never 
observed to follow w3 in the training set)

 CAN WE DO BETTER THAN THIS?

Dealing with Unseen Ngrams
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Unseen Ngrams: BACKOFF

 Example:  Words  w5 and w6 were never observed to follow w3 in 

the training data

 E.g. we never saw “dog” or “bear” follow the word “the”

 Backoff assumption:  Relative frequencies of w5 and w6 will be the 

same in the context of w3 (bigram) as they are in the language in 

general (Unigrams)

 If the number of times we saw “dog” in the entire training corpus was 10x 

the no. of times we saw “bear”, then we assume that the number of times we 

will see “dog” after “the” is also 10x the no. of times we will see “bear” after 

“the”

 Generalizing:   Ngram probabilities of words that are never seen (in 

the training data) in the given N-gram context follow the same 

distribution pattern observed in the N-1 gram context



 Explanation with a bigram example

N-gram LM: Backoff

 Unigram probabilities are computed and known before bigram probabilities 

are computed

 Bigrams for P(w1 | w3), P(w2 | w3) and P(w3 | w3) were computed from 

discounted counts. w4, w5, w6 and </s> were never seen after w3 in the 

training corpus
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 Explanation with a bigram example

N-gram LM: Backoff

 The probabilities P(w4|w3),  P(w5|w3), P(w6|w3) and P(</s>|w3) are assumed to 

follow the same pattern as the unigram probabilities P(w4), P(w5), P(w6) and 

P(</s>)

 They must, however be scaled such that 

P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0

 The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4)
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N-gram LM: Backoff

 P(w1|w3) + P(w2|w3) + P(w3|w3) + scale*(P(w4)+P(w5)+P(w6)+P(</s>)) = 1.0

 The backoff bigram probability for the unseen bigram P(w4 | w3) = scale*P(w4)

 The scale term is called the backoff term. It is specific to w3

 Scale = backoff(w3)

 Specificity is because the various terms used to compute scale are specific to w3
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 Assumption: When estimating N-gram probabilities, we already have access to all 

N-1 gram probabilities

 Let w1 … wK be the words in the vocabulary (includes </s>)

 Let WN-1 be the context for which we are trying to estimate N-gram probabilities

 Will be some sequence of N-1 words (for N-gram probabilities)

 i.e  we wish to compute all probabilities P(word | WN-1)

 E.g W3 = “wa wb wc”.  We wish to compute all 4-gram probabilities P(word | wa wb wc)

N-gram LM (Katz  Models): Backoff from N-gram to (N-1)-gram
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 Step 1:  Compute leftover probability mass for unseen N-grams (of the form 

P(word| WN-1)) using Good Turing discounting

 Pleftover(WN-1) – this is specific to context WN-1 as we are only counting words that 

follow word sequence WN-1

 Step 2: Compute backoff weight

N-gram LM (Katz  Models): Backoff from N-gram to (N-1)-gram







 text trainingin the  followingseen  NOT  was

2

 text trainingin the  followingseen   was
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 Note WN-2 in the denominator.  If WN-1 is “wa wb wc”, WN-2 is “wb wc” 

 The trailing N-2 words only

 We already have N-1 gram probabilities of the form P(w | WN-2)

 Step 3: We can now compute N-gram probabilities for unseen Ngrams

 Actually, this is done “on demand” – there’s no need to store them explicitly.
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 In order to estimate the backoff weight needed to compute

N-gram probabilities for unseen N-grams, the corresponding N-1 

grams are required (as in the following 4-gram example)

 The corresponding N-1 grams might also not have been seen in the training 

data

 If  the backoff N-1 grams are also unseen, they must in turn be 

computed by backing off to N-2 grams

 The backoff weight for the unseen N-1 gram must also be known

 i.e. it must also have been computed already

 All lower order N-gram parameters (including probabilities and 

backoff weights) must be computed before higher-order N-gram 

parameters can be estimated

Backoff is recursive
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 First compute Unigrams

 Count words, perform discounting, estimate discounted probabilities for all seen 

words

 Uniformly distribute the left-over probability over unseen unigrams

 Next, compute bigrams. For each word W seen in the training data:

 Count words that follow that W. Estimate discounted probabilities P(word | W) for 

all words that were seen after W. 

 Compute the backoff weight b(W) for the context W.

 The set of explicity estimated P(word | W) terms, and the backoff weight b(W) 

together permit us to compute all bigram probabilities of the kind: P(word | W)

 Next, compute trigrams: For each word pair “wa wb” seen in the training data:

 Count words that follow that “wa wb”. Estimate discounted probabilities

P(word | wa wb) for all words that were seen after “wa wb”. 

 Compute the backoff weight b(wa wb) for the context “wa wb”.

 The process can be continued to compute higher order N-gram probabilities.

Learning Backoff Ngram models



 An N-gram backoff language model contains

 Unigram probabilities for all words in the vocabulary

 Backoff weights for all words in the vocabulary

 Bigram probabilities for some, but not all bigrams

 i.e. for all bigrams that were seen in the training data

 If N>2, then: backoff weights for all seen word pairs

 If the word pair was never seen in the training corpus, it will not have a backoff 

weight. The backoff weight for all word pairs that were not seen in the training 

corpus is implicitly set to 1

 …

 N-gram probabilities for some, but not all N-grams

 N-grams seen in training data

 Note that backoff weights are not required for N-length word sequences in 

an N-gram LM

 Since backoff weights for N-length word sequences are only useful to compute 

backed off N+1 gram probabilities

The contents of a completely trained N-gram language model



An Example Backoff Trigram LM

\1-grams:

-1.2041 <UNK> 0.0000

-1.2041 </s> 0.0000

-1.2041 <s> -0.2730

-0.4260 one -0.5283

-1.2041 three -0.2730

-0.4260 two -0.5283

\2-grams:

-0.1761 <s> one      0.0000

-0.4771 one three    0.1761

-0.3010 one two      0.3010

-0.1761 three two    0.0000

-0.3010 two one      0.3010

-0.4771 two three    0.1761

\3-grams:

-0.3010 <s> one two 

-0.3010 one three two 

-0.4771 one two one 

-0.4771 one two three 

-0.3010 three two one 

-0.4771 two one three 

-0.4771 two one two 

-0.3010 two three two



 To retrieve a probability P(word | wa wb wc …)

 How would a function written for returning N-gram probabilities work?

 Look for the probability P(word | wa wb wc …) in the LM

 If it is explicitly stored, return it

 If P(word | wa wb wc …)  is not explicitly stored in the LM retrive

it by backoff to lower order probabilities:

 Retrieve backoff weight backoff(wa wb wc..) for word sequence wa wb wc

 If it is stored in the LM, return it

 Otherwise return 1

 Retrieve P(word | wb wc …) from the LM

 If P(word | wb wc .. ) is not explicitly stored in the LM, derive it backing off

 This will be a recursive procedure

 Return P(word | wb wc …)  * backoff(wa wb wc..)

Obtaining an N-gram probability from a backoff N-gram LM



Toolkits for training Ngram LMs

 CMU-Cambridge LM Toolkit

 SRI LM Toolkit

 MSR LM toolkit

 Good for large vocabularies

 ..

 Your own toolkit here



http://mi.eng.cam.ac.uk/~prc14/toolkit.html

http://www.speech.cs.cmu.edu/SLM_info.html

Contents of textfile

<s>  the term cepstrum was introduced by Bogert et al and has come to be 

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum 

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper 

with the unusual title 

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance 

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an 

echo has an additive 

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power 

spectrum should exhibit a peak at the echo delay 

they called this function the cepstrum

interchanging letters in the word spectrum because 

in general, we find ourselves operating on the frequency side in ways customary 

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new 

signal processing technique however only the term cepstrum has been widely used

The transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic 

systems for processing signals that have been combined by convolution

</s>

vocabulary

<s>  

</s>

the 

term 

cepstrum 

was 

introduced 

by 

Bogert 

et 

al 

and 

has 

come 

to 

be 

accepted 

terminology 

for

inverse 

Fourier 

transform 

of 

logarithm 

Power

. . .

Contents of contextfile
<s>

Training a language model using CMU-Cambridge LM toolkit

http://mi.eng.cam.ac.uk/~prc14/toolkit.html
http://www.speech.cs.cmu.edu/SLM_info.html


To train a bigram LM (n=2):

$bin/text2idngram -vocab vocabulary -n 2 -write_ascii < textfile > idngm.tempfile

$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM -context 

contextfile -absolute -ascii_input -n 2 (optional: -cutoffs 0 0 or –cutoffs 1 1 ….)

OR

$bin/idngram2lm -idngram idngm.tempfile -vocab vocabulary -arpa MYarpaLM  -context 

contextfile  -good_turing -ascii_input -n 2

….

Training a language model using CMU-Cambridge LM toolkit



Representing N-gram LMs as graphs 

 For recognition, the N-

gram LM can be 

represented as a finite 

state graph

 Recognition can be 

performed exactly as we 

would perform 

recognition with 

grammars

 Problem: This graph can 

get enormously large

 There is an arc for every 

single N-gram 

probability!

 Also for every single N-

1, N-2 .. 1-gram 

probabilities
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The representation is wasteful

 In a typical N-gram LM,  the vast majority of bigrams, 

trigrams (and higher-order N-grams) are computed by 

backoff

 They are not seen in training data, however large

 The backed-off probability for an N-gram is obtained from 

the N-1 gram!

 So for N-grams computed by backoff  it should be sufficient 

to store only the N-1 gram in the graph

 Only have arcs for P(w | wb wc);  not necessary to have explicit arcs 

for P(w | wa wb wc)

 This will reduce the size of the graph greatly
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Ngram LMs as FSGs: accounting for backoff

 N-Gram language models with back-off can be represented 

as finite state grammars

 That explicitly account for backoff!

 This also permits us to use grammar-based recognizers to 

perform recognition with Ngram LMs

 There are a few precautions to take, however



Ngram to FSG conversion: Trigram LM

 \1-grams:

-1.2041 <UNK> 0.0000

-1.2041 </s> 0.0000

-1.2041 <s> -0.2730

-0.4260 one -0.5283

-1.2041 three -0.2730

-0.4260 two -0.5283

 \2-grams:

-0.1761 <s> one      0.0000

-0.4771 one three    0.1761

-0.3010 one two      0.3010

-0.1761 three two    0.0000

-0.3010 two one      0.3010

-0.4771 two three    0.1761

 \3-grams:

-0.3010 <s> one two 

-0.3010 one three two 

-0.4771 one two one 

-0.4771 one two three 

-0.3010 three two one 

-0.4771 two one three 

-0.4771 two one two 

-0.3010 two three two 



Step1: Add Explicit Ngrams:

 Note “EPSILON” Node for Unigram Probs

 \1-grams:

-1.2041 <UNK> 0.0000

-1.2041 </s> 0.0000

-1.2041 <s> -0.2730

-0.4260 one -0.5283

-1.2041 three -0.2730

-0.4260 two -0.5283

 \2-grams:

-0.1761 <s> one      0.0000

-0.4771 one three    0.1761

-0.3010 one two      0.3010

-0.1761 three two    0.0000

-0.3010 two one      0.3010

-0.4771 two three    0.1761

 \3-grams:

-0.3010 <s> one two 

-0.3010 one three two 

-0.4771 one two one 

-0.4771 one two three 

-0.3010 three two one 

-0.4771 two one three 

-0.4771 two one two 

-0.3010 two three two 

2

3

1

3

2

1

1

3unk

e

</s>

<s> 2

P(3)
P(2|3)

P(1|<s>)

P(1 | 3 2)

P(2 | 2 3)

Note: The two-word history out of 
every node in the bigram word 
history level is unique 

UG word 

history level

BG word 

history level



Step2: Add Backoffs

 From any node representing a word 

history  “wa” (unigram) add BO arc to epsilon
 With score Backoff(wa)

 From any node representing a word history “wa wb” add a BO arc to 

wb
 With score Backoff (wa wb)

 \1-grams:

-1.2041 <UNK> 0.0000

-1.2041 </s> 0.0000

-1.2041 <s> -0.2730

-0.4260 one -0.5283

-1.2041 three -0.2730

-0.4260 two -0.5283

 \2-grams:

-0.1761 <s> one      0.0000

-0.4771 one three    0.1761

-0.3010 one two      0.3010

-0.1761 three two    0.0000

-0.3010 two one      0.3010

-0.4771 two three    0.1761

 \3-grams:

-0.3010 <s> one two 

-0.3010 one three two 

-0.4771 one two one 

-0.4771 one two three 

-0.3010 three two one 

-0.4771 two one three 

-0.4771 two one two 

-0.3010 two three two 

2

3

1

3

2

1

1

3unk

e (1)

</s>

<s> 2

BO(3)
BO(3 2)

BO(2 3)

BO(1)

BO(1 3)



Ngram to FSG conversion: FSG

2 (7)

3 (8)

1 (9)

3 (10)

2 (11)

1 (12)

1 (6)

3 (4)unk (2)

e (1)

</s>(3)

<s>(0)

 Yellow ellipse is start node
 Pink ellipse is “no gram” node
 Blue ellipses are unigram nodes
 Gray ellipses are bigram nodes

2 (5)

o Score of shortest path from any node to </s> is subsumed

into the termination score for that node.

o The explicit probability link into </s> can then be removed
- Yellow star represents termination score

 red text represents
words

 Green (parenthesized)
numbers are node numbers



A Problem: Paths are Duplicated

2 (7)

3 (8)

1 (9)

3 (10)

2 (11)

1 (12)

1 (6)

3 (4)unk (2)

e (1)

</s>(3)

<s>(0) 2 (5)

o Explicit trigram paths also have backed off alternatives

Explicit trigram path for trigram “three two one”



Backoff paths exist for explicit Ngrams

2 (7)

3 (8)

1 (9)

3 (10)

2 (11)

1 (12)

1 (6)

3 (4)unk (2)

e (1)

</s>(3)

<s>(0) 2 (5)

o Explicit trigram paths also have backed off alternatives

Backoff trigram path for trigram “three two one”



Delete “losing” edges

2 (7)

3 (8)

1 (9)

3 (10)

2 (11)

1 (12)

1 (6)

3 (4)unk (2)

e (1)

</s>(3)

<s>(0) 2 (5)

o When the best backed off trigram path scores higher than the

explicit trigram path, the explicit trigram link can be removed

o Renormalization of backoff scores will be required to ensure sum(prob)=1

Deleted trigram link



Delete “Losing” Edges

2 (7)

3 (8)

1 (9)

3 (10)

2 (11)

1 (12)

1 (6)

3 (4)unk (2)

e (1)

</s>(3)

<s>(0) 2 (5)

o Explicit bigram links can also be similarly removed if

backed off score is higher than explicit link score

o Backoff scores (yellow link scores) will have to be renormalized

for probabilities to add to 1.

Deleted bigram link



 Train HMMs for the acoustic model

 Train N-gram LM with backoff from training data

 Construct the Language graph, and from it the language HMM

 Represent the Ngram language model structure as a compacted N-gram 

graph, as shown earlier

 The graph must be dynamically constructed during recognition – it is 

usually too large to build statically

 Probabilities on demand: Cannot explicitly store all K^N probabilities 

in the graph, and must be computed on the fly

 K is the vocabulary size

 Other, more compact structures, such as FSAs can also be used to 

represent the lanauge graph

 later in the course

 Recognize

Overall procedure for recognition with an Ngram language model


