
Design and Implementation of

Speech Recognition Systems

Spring 2011

Class 12: Continuous Speech

28 Feb 2011

28 Feb 2011 1

Spell Checking

• I retruned and saw unnder thhe sun thet the erace

is nott to the svift nor the batle to the sdrong

neither yet bread to the weise nor yet riches to

men of andurstendin nor yet feyvor to nen of skill

but tyme and chance happene to them all

• How to correct spelling?

– For each word

• Compare word to all words in dictionary

• Select closest word

28 Feb 2011 2

Spell Checking

• I retruned and saw unnder thhe sun thet therace

is notto the svift northe batleto the strong

neither yet bread tothe weise nor yet riches to

men ofandurstendin nor yet feyvor tomen of

skill but tyme and chance happeneto them all

• How to correct spelling?

– Some words have “merged”

28 Feb 2011 3

Spell Checking

• Iretrunedandsawunnderthhesunthettheraceisnot

tothesviftnorthebatletothestrongneitheryetbrea

dtotheweisenoryetrichestomenofandurstendinn

oryetfeyvortomenofskillbuttymeandchancehap

penetothemall

• How to correct spelling now?

28 Feb 2011 4

A Simpler Problem

• Ireturnedandsawunderthesunthattheraceisnottot

heswiftnorthebattletothestrongneitheryetbreadt

othewisenoryetrichestomenofunderstandingnor

yetfavortomenofskillbuttimeandchancehappent

othemall

• Automatic introduce spaces

28 Feb 2011 5

The Basic Spellchecker

• Compare the string to

each of the words in the

dictionary

6

* U R O P *

*

P

O

R

D

*

*

R

O

*

*

N

O

*

28 Feb 2011

The Basic Spellchecker

• Compare the string to

each of the words in the

dictionary

• The corresponding

trellis

– Cross products of the

dictionary strings and

input string

7

* U R O P *

*

P

O

R

D

*

*

R

O

*

*

N

O

*

28 Feb 2011

The Basic Spellchecker

• Compare the string to

each of the words in the

dictionary

• The corresponding trellis

– Cross products of the

dictionary strings and

input string

• An equivalent trellis

– Note the template model

8

* U R O P *

*

P

O

R

D

R

O

N

O

*

28 Feb 2011

The Trellis as a Product

• The Trellis is a “cross

product” of the data

string..

• And a model..

9

* U R O P *

*

P

O

R

D

R

O

N

O

*

* U R O P *

D R O P

O R

O N

* *

28 Feb 2011

Continuous text: Looping around

• To model

continuous text,

include a

loopback

28 Feb 2011 10

D R O P

O R

O N

* *

*

P

O

R

D

R

O

N

O

*

Green arrows to terminating node, red arrows returning to initial node

Continuous text: Looping around

• Loopback from the

end of each word

• Alignment finds

word boundaries at

the dummy node

28 Feb 2011 11

D R O P

O R

O N

*

P

O

R

D

R

O

N

O

*

Continuous text: Looping around

• To encourage (or discourage)

word boundaries, assign

appropriate penalties to

loopback edges

– The red edges

– By default these are insertion

edges

– Helps decide between

“Tothe” == “To The” and

“Tothe” == “Tithe”
28 Feb 2011 12

D R O P

O R

O N

*

P

O

R

D

R

O

N

O

*

Continuous Text: Lextree

• The trellis can be formed from the loopy lextree

• Loopback arcs always move forward to the next input symbol
– Cannot represent deletions!

28 Feb 2011 13

OH R

ED

IR

LB E

D

horrible

horrid

horde

*

Continuous text with arbitrary spaces

• The methods shown so far permit checking
and segmentation (into words) of text without
spaces

– E.g.
Iretrunedandsawunnderthhesunthettheraceisnottoth
esviftnorthebatletothestrong

• How about text with potentially erroneous
spaces

– E.g. I retruned and saw unnder thhe sun thet
therace is notto the svift northe batleto the strong

28 Feb 2011 14

Models with optional spaces

• Flat structure (each chain is a word)

• The spaces are optional

28 Feb 2011 15

D R O P

O R

O N

*

“ “

“ “

“ “

Models with optional spaces

• Lextree (each leaf is a word)

• The spaces are optional

28 Feb 2011 16

OH R

ED

IR

LB E

D*

“ “

“ “

“ “

28 Feb 2011

Preview of Topics

• Topics so far: Isolated word recognition

• Today: continuous speech recognition, including:

– Notion and construction of a sentence HMM

– Review construction of search trellis from sentence HMM (or any graphical
model)

– Non-emitting states for simplifying sentence HMM construction

– Modifying the search trellis for non-emitting states

• To cover later

– The word-level back-pointer table data structure for efficient retrieval of the
best word sequence from the search trellis

– New pruning considerations: word beams, and absolute pruning

– Measurement of recognition accuracy or errors

– The generation of word lattices and N-best lists

• The A* algorithm and the Viterbi N-best list algorithm

17

28 Feb 2011

Isolated Word vs Continuous Speech

• A simple way to build a continuous speech recognizer:

– Learn Templates for all possible sentences that may be spoken

– E.g. record “delete the file” and “save all files” as separate

templates

• For a voice-based UI to an editor

– Recognize entire sentences (no different from isolated word

recognition)

• Problem: Extremely large number of sentences possible

– Even a simple digit recognizer for phone numbers: A billion

possible phone numbers!

– Cannot record every possible phone number as template

18

Templates for “Sentences”

• Recording entire sentences as “templates” is a reasonable idea

• But quickly becomes infeasible as the number of sentences

increases

• Inflexible: Cannot recognize sentences for which no template

has been recorded

28 Feb 2011 19

28 Feb 2011

Other Issues with Continuous Speech

• Much greater variation in speaking rate
– Having to speak with pauses forces one to speak more uniformly

– Greater variation demands better acoustic models for accuracy

• More pronounced contextual effects
– Pronunciation of words influenced by neighboring words

• “Did you” -> “Dijjou”

• Spontaneous (unrehearsed) speech may include
mispronunciations, false-starts, non-words (e.g.
umm and ahh)
– Need templates for all pronunciation and disfluency variants

20

28 Feb 2011

Treat it as a series of isolated word recognition

problems?

• Record only word templates
– Segment recording into words, recognize individual words

• But how do we choose word boundaries?
– Choosing different boundaries affects the results

• E.g. “This car” or “This scar”? “The screen” or “This green”?

• Similar to reading text without spaces:
ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattletothestrongneitheryetbreadt
othewisenoryetrichestomenofunderstandingnoryetfavourtomenofskillbuttimeandchancehappe
nethtothemall

T H I S C A R

T H I S C A R

T H E S C A R ?

21

28 Feb 2011

Recording only Word Templates

• Brute force: Consider all possibilities

– Segment recording in every possible way

– Run isolated word recognition on each segment

– Select the segmentation (and recognition) with the lowest total cost of match

• I.e. cost of best match to first segment + cost of best match to second..

• Quickly gets very complex as the number of words increases

– Combinatorially high number of segmentations

– Compounded by fact that number of words is unknown

D E S C A R

T H I S C A R

T H E S C A R

T H I S C A R

?

? ?

?

22

28 Feb 2011

A Simple Solution

• Build/Record word templates

• Compose sentence templates from word templates

• Composition can account for all variants, disfluencies etc.

– We will see how..

23

28 Feb 2011

Building Sentence Templates

• Build sentence HMMs by concatenating the HMMs for the

individual words

– e.g. sentence “red green blue”

– The sentence HMM looks no different from a word HMM

– Can be evaluated just like a word HMM

• Caveat: Must have good models for the individual words

– Ok for a limited vocabulary application

• E.g. command and control application, such as robot control

red green blue

endstart

24

28 Feb 2011

Handling Silence

• People often pause between words in continuous speech

– Often, but not always!

– Not predictable when there will be a pause

• The composed sentence HMM fails to allow silences in the spoken

input

– If the input contained “[silence] red green [silence] blue [silence]”, it would match

badly with the sentence HMM

• Need to be able to handle optional pauses between words

– Like spaces between words

red green blue

endstart

25

28 Feb 2011

Sentence HMM with Optional Silences

• Optional silences can be handled by adding a silence HMM between every

pair of words, but with a bypass:

• The “bypass” makes it optional: The person may or may not pause

– If there is a pause, the best match path will go through the silence HMM

– Otherwise, it will be bypassed

• The “silence” HMM must be separately trained

– On examples of recordings with no speech in them (not strictly silence)

red green blue

silence

bypass transitions

26

Composing HMMs for Word Sequences

• Given HMMs for word1 and word2
– Which are both Bakis topology

• How do we compose an HMM for the word sequence

“word1 word2”
– Problem: The final state in this model has only a self-transition

– According the model, once the process arrives at the final state of word1 (for

example) it never leaves

– There is no way to move into the next word

28 Feb 2011

word1 word2

27

28 Feb 2011

Introducing the Non-emitting state

• So far, we have assumed that every HMM state models some output,

with some output probability distribution

• Frequently, however, it is useful to include model states that do not

generate any observation

– To simplify connectivity

• Such states are called non-emitting states or sometimes null states

• NULL STATES CANNOT HAVE SELF TRANSITIONS

• Example: A word model with a final null state

28

28 Feb 2011

HMMs with NULL Final State

• The final NULL state changes the trellis
– The NULL state cannot be entered or exited within the word

• If there are exactly 5 vectors in word 5, the NULL
state may only be visited after all 5 have been scored

WORD1 (only 5 frames)

29

28 Feb 2011

The NULL final state

• The probability of transitioning into the NULL final state at

any time t is the probability that the observation sequence for

the word will end at time t

• Alternately, it represents the probability that the observation

will exit the word at time t

t
word1 Next word

30

28 Feb 2011

Connecting Words with Final NULL States

• The probability of leaving word 1 (i.e the probability of going to the

NULL state) is the same as the probability of entering word2

– The transitions pointed to by the two ends of each of the colored arrows are

the same

HMM for word1 HMM for word2

HMM for word2HMM for word1

31

28 Feb 2011

Retaining a non-emitting state between words

• In some cases it may be useful to retain the non-

emitting state as a connecting state

– The probability of entering word 2 from the non-

emitting state is 1.0

– This is the only transition allowed from the non-

emitting state

32

28 Feb 2011

Retaining the Non-emitting State

HMM for the word sequence “word2 word1”

HMM for word2HMM for word1

HMM for word2HMM for word1

1.0

33

28 Feb 2011

A Trellis With a Non-Emitting State

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• Since non-emitting states are not associated with observations, they have no “time”

– In the trellis this is indicated by showing them between time marks

– Non-emitting states have no horizontal edges – they are always exited instantly

34

28 Feb 2011

Viterbi with Non-emitting States

• Non-emitting states affect Viterbi decoding

– The process of obtaining state segmentations

• This is critical for the actual recognition

algorithm for word sequences

35

28 Feb 2011

Viterbi through a Non-Emitting State

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• At the first instant only the first state may be

entered

36

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

Viterbi through a Non-Emitting State

• At t=2 the first two states have only one possible

entry path

37

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

Viterbi through a Non-Emitting State

• At t=3 state 2 has two possible entries. The best

one must be selected

38

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

Viterbi through a Non-Emitting State

• At t=3 state 2 has two possible entries. The best

one must be selected

39

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• After the third time instant we an arrive at the non-
emitting state. Here there is only one way to get to
the non-emitting state

Viterbi through a Non-Emitting State

40

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• Paths exiting the non-emitting state are now in word2
– States in word1 are still active

– These represent paths that have not crossed over to word2

Viterbi through a Non-Emitting State

41

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• Paths exiting the non-emitting state are now in word2
– States in word1 are still active

– These represent paths that have not crossed over to word2

Viterbi through a Non-Emitting State

42

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• The non-emitting state will now be arrived at

after every observation instant

Viterbi through a Non-Emitting State

43

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• “Enterable” states in word2 may have incoming paths either from the

“cross-over” at the non-emitting state or from within the word

– Paths from non-emitting states may compete with paths from emitting states

Viterbi through a Non-Emitting State

44

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• Regardless of whether the competing incoming paths are from

emitting or non-emitting states, the best overall path is selected

Viterbi through a Non-Emitting State

45

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

• The non-emitting state can be visited after every

observation

Viterbi through a Non-Emitting State

46

28 Feb 2011

t

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

Viterbi through a Non-Emitting State

• At all times paths from non-emitting states may

compete with paths from emitting states

47

28 Feb 2011

W
o

rd
2

W
o

rd
1

Feature vectors
(time)

Viterbi through a Non-Emitting State

• At all times paths from non-emitting states may
compete with paths from emitting states
– The best will be selected

– This may be from either an emitting or non-emitting state 48

28 Feb 2011

Viterbi with NULL states

• Competition between incoming paths from emitting and non-
emitting states may occur at both emitting and non-emitting states

• The best path logic stays the same. The only difference is that the
current observation probability is factored into emitting states

• Score for emitting state (as probabilities)

• Score for non-emitting state

• Using log probabilities

 
}{'}{'', |)'|(),'(,|)'|()1,'(max)|(),(gnonemittinsuemittingsustuu ssPtsPssPtsPsxPtsP 

 
}{'}{'' |)'|(),'(,|)'|()1,'(max),(gnonemittinsuemittingsusu ssPtsPssPtsPtsP 

            
}{'}{'', |)'|(log),'(log,|)'|(log)1,'(logmax)|(log),(log gnonemittinsuemittingsustuu ssPtsPssPtsPsxPtsP  

          
}{'}{'' |)'|(log),'(log,|)'|(log)1,'(logmax),(log gnonemittinsuemittingsusu ssPtsPssPtsPtsP  

49

28 Feb 2011

Speech Recognition as String Matching

• We find the distance of the data from the “model” using the Trellis for the word

• Pick the word for which this distance is lowest

• Word = argmin word distance(data, model(word))

• Using the DTW / HMM analogy

– Word = argmax word probability(data | model(word))

• Alternately, argmaxword logprobability(data | model)

– Alternately still: argminword –logprobability(data | model)

M
O

D
E

L

DATA

50

28 Feb 2011

Speech Recognition as Bayesian

Classification

• Different words may occur with different frequency

– E.g. a person may say “SEE” much more frequently than “ZEE”

• This must be factored in

– If we are not very sure they said “SEE” or “ZEE”, choose “SEE”

• We are more likely to be right than if we chose ZEE

• The basic DTW equation does not factor this in

– Word = argmax word probability(data | word) does not account for prior bias

• Cast the problem instead as a Bayesian classification problem

– Word = argmax word p(word) probability(data | word)

– “p(word)” is the a priori probability of the word

– Naturally accounts for prior bias

51

Probability of X as given by

the probability distribution of Cj

a priori probability of Cj

28 Feb 2011

 Given data X, find which of a number of classes C1, C2,…CN it

belongs to, based on known distributions of data from C1, C2, etc.

 Bayesian Classification:

Class = Ci : i = argmaxj log(P(Cj)) + log(P(X|Cj))

Statistical pattern classification

 The a priori probability accounts for the relative proportions of the classes

– If you never saw any data, you would guess the class based on these

probabilities alone

 P(X|Cj) accounts for evidence obtained from observed data X

52

28 Feb 2011

 Classes are words

Data are instances of spoken words
– Sequence of feature vectors derived from speech signal

 Bayesian classification:

Recognized_Word = argmaxword log(P(word)) + log(P(X| word))

 P(word) is a priori probability of word

 Obtained from our expectation of the relative frequency of occurrence of

the word

 P(X|word) is the probability of X computed on the probability distribution

function of word

Isolated Word Recognition as Bayesian

Classification

53

28 Feb 2011

• P(X|word) is computed from the HMM for the word

– HMMs are actually probability distributions

• Ideally P(X|word)is computed using the forward algorithm

• In reality computed as the best path through a Trellis

– A priori probability P(word) is factored into the Trellis

non-emitting absorbing
state

Computing P(X|word)

28 Feb 2011

Log(P(Odd))

HMM for Odd HMM for Even

Log(P(Even))

BestPathLogProb(X,Odd) BestPathLogProb(X,Even)

Factoring in a priori probability into Trellis

The prior bias is factored in as the edge penalty at the entry to the trellis

28 Feb 2011

Time-Synchronous Trellis: Odd and Even

Log(P(Odd))

Log(P(Even))

BestPathLogProb(X,Odd)

B
estPath

Lo
gP

ro
b

(X
,Even

)

Merged
final states

28 Feb 2011

• Compute the probability of best path

– Computations can be done in the log domain. Only additions and

comparisons are required

Time Synchronous DecodeOdd and Even

Log(P(Odd))

Log(P(Even))

BestPathLogProb(X,Odd)

B
estPath

Lo
gP

ro
b

(X
,Even

)

28 Feb 2011

Score(X,Even)

Score(X,Odd)

• Compare scores (best state sequence probabilities) of all competing
words

• Select the word sequence corresponding to the path with the best score

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))

28 Feb 2011

• Construct a trellis (search graph) based on the
HMM for each word

– Alternately construct a single, common trellis

• Select the word corresponding to the best
scoring path through the combined trellis

Decoding isolated words with word HMMs

59

Why Scores and not Probabilities

• Trivial reasons

– Computational efficiency: Use log probabilities and perform

additions instead of multiplications

• Use log transition probabilities and log node probabilities

• Add log probability terms – do not multiply

– Underflow: Log probability terms add – no underflow

• Probabilities will multiply and underflow rather quickly

• Deeper reason

– Using scores enables us to collapse parts of the trellis

– This is not possible using forward probabilities

– We will see why in the next few slides

28 Feb 2011 60

28 Feb 2011

• Classes are word sequences
• Data are spoken recordings of word sequences
• Bayesian classification:

)},...,,(),...,,|({maxarg

,...,,

2121,...,,

21

21 NNwdwdwd

N

wdwdwdPwdwdwdXP

wordwordword

N



Statistical classification of word sequences

• P(wd1,wd2,wd3..) is a priori probability of word sequence wd1,wd2,wd3..

– Is the word sequence “close file” more common than “delete file”..

• P(X| wd1,wd2,wd3..) is the probability of X computed on the HMM for the

word sequence wd1,wd2,wd3

• Ideally must be computed using the forward algorithm

 Given data X, find which of a number of classes C1, C2,…CN it belongs to,

based on known distributions of data from C1, C2, etc.

 Bayesian Classification:

Class = Ci : i = argmaxj P(Cj)P(X|Cj)

61

28 Feb 2011

Decoding continuous speech

First step: construct an HMM for each possible word sequence

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability

distribution function of the word sequence wd1,wd2,wd3..

– HMMs now represent probability distributions of word sequences

– Once again, this term must be computed by the forward algorithm

HMM for word 1 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for

each possible word sequence

62

28 Feb 2011

R
o

ck
St

ar

D
o

g
St

ar

P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

P(Rock Star) P(Dog Star)

Bayesian Classification between word

sequences
u Classifying an utterance as either “Rock Star” or “Dog Star”

u Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)

u This is the complete forward score at the final trellis node

63

28 Feb 2011

R
o

ck

D
o

g
St

ar

P(Rock) P(Dog)

P(Star|Rock) P(Star|Dog)

P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

St
ar

Bayesian Classification between word

sequences

u The a priori probability of the word sequences (P(Rock Star), P(Dog Star))

can be spread across the Trellis without changing final probabilities

64

28 Feb 2011

R
o

ck

D
o

g
St

ar

Log(P(Rock)) Log(P(Dog))

Log(P(Star|Rock)) Log(P(Star|Dog))

Score(Dog Star)Score(Rock Star)

St
ar

Decoding between word sequences

u In reality we find the score/cost of the best paths through the trellises

u Not the full forward score

u I.e. we perform DTW based classification, not Bayesian classification

65

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

P(Dog,Star)P(X|Dog Star)

P(Rock,Star)P(X|Rock Star)

Time Synchronous Bayesian Classification

between word sequences

66

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

Score(Rock Star)

Score(Dog Star)

Use best path score

To determine

Time synchronous decoding to classify

between word sequences

67

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

68

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

SET 1 and its best path

dogstar1

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

69

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

SET 2 and its best path

dogstar2

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

70

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

SET 3 and its best path

dogstar3

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

71

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

SET 4 and its best path

dogstar4

The best path through
Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

There are four different sets
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

72

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

The best path through
Dog Star is the best of
the four transition-specific
best paths

max(dogstar) =

max (dogstar1, dogstar2,

dogstar3, dogstar4)

Decoding to classify between word sequences

73

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

Similarly, for Rock Star
the best path through
the trellis is the best of
the four transition-specific
best paths

max(rockstar) =

max (rockstar1, rockstar2,

rockstar3, rockstar4)

Decoding to classify between word sequences

74

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

Then we’d compare the
best paths through Dog
Star and Rock Star

max(dogstar) =

max (dogstar1, dogstar2,

dogstar3, dogstar4)

max(rockstar) =

max (rockstar1, rockstar2,
rockstar3, rockstar4)

Viterbi =

max(max(dogstar),
max(rockstar))

Decoding to classify between word sequences

75

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

argmax is commutative:

max(max(dogstar), max(rockstar)
)

=

max (

max(dogstar1, rockstar1),

max(dogstar2, rockstar2),

max (dogstar3,rockstar3),

max(dogstar4,rockstar4)

)

Decoding to classify between word sequences

76

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

We can choose between
Dog and Rock right here
because the futures of these
paths are identical

For a given entry point
the best path through STAR
is the same for both trellises

t1

Max (dogstar1, rockstar1)

max(max(dogstar), max(rockstar))

=

max (

max(dogstar1, rockstar1),

max(dogstar2, rockstar2),

max (dogstar3,rockstar3),

max(dogstar4,rockstar4)

)

77

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

We select the higher scoring
of the two incoming edges
here

This portion of the
trellis is now deleted

t1

Max (dogstar1, rockstar1)

78

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

Similar logic can be applied
at other entry points to

Star

•t1

max(max(dogstar), max(rockstar))

=

max (

max(dogstar1, rockstar1),

max(dogstar2, rockstar2),

max (dogstar3,rockstar3),

max(dogstar4,rockstar4)

)

Max (dogstar2, rockstar2)

79

28 Feb 2011

R
o

ck
St

ar
D

o
g

St
ar

Similar logic can be applied
at other entry points to

Star

•t1

max(max(dogstar), max(rockstar))

=

max (

max(dogstar1, rockstar1),

max(dogstar2, rockstar2),

max (dogstar3,rockstar3),

max(dogstar4,rockstar4)

)

Max (dogstar3, rockstar3)

80

28 Feb 2011

R
o

ck
D

o
g

St
ar

Similar logic can be applied
at other entry points to

Star

•t1

max(max(dogstar), max(rockstar))

=

max (

max(dogstar1, rockstar1),

max(dogstar2, rockstar2),

max (dogstar3,rockstar3),

max(dogstar4,rockstar4)

)

Max (dogstar4, rockstar4)

81

28 Feb 2011

R
o

ck
D

o
g

St
ar

Similar logic can be applied
at other entry points to

Star

This copy of the trellis
for STAR is completely
removed

Decoding to classify between word sequences

82

28 Feb 2011

R
o

ck
D

o
g

St
ar

u The two instances of Star can be collapsed into one to form a smaller

trellis

Decoding to classify between word sequences

83

28 Feb 2011

R
o

ck
D

o
g

St
ar

We will represent the
vertical axis of the
trellis in this simplified
manner

Rock Dog Star

Rock

Dog

Star=

Language-HMMs for fixed length word

sequences

84

28 Feb 2011

• The actual recognition is DOG STAR vs. ROCK STAR

– i.e. the two items that form our “classes” are entire phrases

• The reduced graph to the right is merely an engineering reduction

obtained by utilizing commonalities in the two phrases (STAR)

– Only possible because we use the best path score and not the

entire forward probability

• This distinction affects the design of the recognition system

The Real “Classes”

Rock

Dog

Star

Rock Star

Dog Star

28 Feb 2011

• The word graph represents all allowed word sequences in our example

– The set of all allowed word sequences represents the allowed “language”

• At a more detailed level, the figure represents an HMM composed of the

HMMs for all words in the word graph

– This is the “Language HMM” – the HMM for the entire allowed language

• The language HMM represents the vertical axis of the trellis

– It is the trellis, and NOT the language HMM, that is searched for the best path

P(Rock)

P(Dog)

P(Star|Rock)

P(Star|Dog)

Ea
ch

 w
o

rd
 is

 a
n

 H
M

M
Language-HMMs for fixed length word

sequences

28 Feb 2011

• Recognizing one of four lines from “charge of the light brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

to

of

Cannon

them

right

left

frontin

behind

P(cannon)

P(to|cannon)

P(right|cannon to)

P(in|cannon)

P(behind|cannon)

P(of|cannon to right)

P(of|cannon to left)

P(them|cannon in front of)

P(them|cannon behind)

them

of

of them

them

P(them|cannon to right of)

P(front|cannon in)
P(of|cannon in front)

P(them|cannon to left of)

P(left|cannon to)

Ea
ch

 w
o

rd
 is

 a
n

 H
M

M
Language-HMMs for fixed length word

sequences

28 Feb 2011

Where does the graph come from
• The graph must be specified to the recognizer

– What we are actually doing is to specify the complete set of

“allowed” sentences in graph form

• May be specified as an FSG or a Context-Free Grammar

– CFGs and FSG do not have probabilities associated with them

– We could factor in prior biases through probabilistic

FSG/CFGs

– In probabilistic variants of FSGs and CFGs we associate

probabilities with options

• E.g. in the last graph

88

28 Feb 2011

• Recognizing one of four lines from “charge of the light brigade”
• If we do not associate probabilities with FSG rules/transitions

to

ofCannon them

right

left

frontin

behind

Simplification of the language HMM through

lower context language models
Ea

ch
 w

o
rd

 is
 a

n
 H

M
M

28 Feb 2011

freezy

breeze

made

these

trees

freeze

three trees

trees’ cheese

Language HMMs for fixed-length word

sequences: based on a grammar for Dr. Seuss
Ea

ch
 w

o
rd

 is
 a

n
 H

M
M

No probabilities specified – a person may utter any of these phrases
at any time

90

28 Feb 2011

delete

file

all

files

open

edit

close
marked

Language HMMs for fixed-length word

sequences: command and control grammar
Ea

ch
 w

o
rd

 is
 a

n
 H

M
M

No probabilities specified – a person may utter any of these
phrases at any time

91

28 Feb 2011

• Previous examples chose between a finite set of known word
sequences

• Word sequences can be of arbitrary length

– E.g. set of all word sequences that consist of an arbitrary number of
repetitions of the word bang

bang
bang bang
bang bang bang
bang bang bang bang
……

– Forming explicit word-sequence graphs of the type we’ve seen so far is not
possible

• The number of possible sequences (with non-zero a-priori probability) is
potentially infinite

• Even if the longest sequence length is restricted, the graph will still be large

Language HMMs for arbitrarily long word

sequences

92

28 Feb 2011

• Arbitrary word sequences can be

modeled with loops under some

assumptions. E.g.:

• A “bang” can be followed by another

“bang” with probability P(“bang”).
– P(“bang”) = X;

P(Termination) = 1-X;

• Bangs can occur only in pairs with

probability X

• A more complex graph allows more

complicated patterns

• You can extend this logic to other

vocabularies where the speaker says

other words in addition to “bang”
– e.g. “bang bang you’re dead”

bang

X

1-X

bang
1-X

bang

X

bang
1-X

X

bang
Y

1-Y

Ea
ch

 w
o

rd
 is

 a
n

 H
M

M
Language HMMs for arbitrarily long word

sequences

93

28 Feb 2011

• Constrained set of word sequences with constrained
vocabulary are realistic

– Typically in command-and-control situations

• Example: operating TV remote

– Simple dialog systems

• When the set of permitted responses to a query is restricted

• Unconstrained word sequences : Natural Language
– State-of-art large vocabulary decoders

– Later in the program..

Language HMMs for arbitrarily long word

sequences

94

28 Feb 2011

QUESTIONS?

• Next up:

• Specifying grammars

• Pruning

• Simple continuous unrestrcted speech

• Backpointer table

• Any questions on topics so far?

95

