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English or German?English or German?
The European Commission has just announced that English, and not 

German, will be the official language of the European Union.

But, as part of the negotiations, the British Government conceded that 
English spelling had some room for improvement and has accepted 
a 5- year phase-in plan that would become known as "Euro-
E li h"English".
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English or German?English or German?
In the first year, "s" will replace the soft "c".  Sertainly, this will make 

the sivil servants jump with joy.

The hard "c" will be dropped in favour of "k".  This should klear up 
konfusion, and keyboards kan have one less letter.

There will be growing publik enthusiasm in the sekond year when the 
troublesome "ph" will be replaced with "f".  This will make words like 
fotograf 20% shorter.

In the 3rd year, publik akseptanse of the new spelling kan be expekted 
to reach the stage where more komplikated changes are possible.

Governments will enkourage the removal of double letters which have 
always ben a deterent to akurate speling.

25 Jan 2010 3



English or German?English or German?
Also, al wil agre that the horibl mes of the silent "e" in the languag is 

disgrasful and it should go away.

By the 4th yer people wil be reseptiv to steps such as replasing "th" with 
"z" and "w"with "v".

During ze fifz yer, ze unesesary "o" kan be dropd from vords kontaining 
"ou" and after ziz fifz yer, ve vil hav a reil sensi bl riten styl.

Zer vil be no mor trubl or difikultis and evrivun vil find it ezi tu 
understand ech oza.  Ze drem of a united urop vil finali kum tru.

Und efter ze fifz yer, ve vil al be speking German like zey vunted in ze 
fo t pl !
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Why is Garbled Text Recgonizable?Why is Garbled Text Recgonizable?
E.g.:

Also, al wil agre that the horibl mes of the silent "e" in the languag 
is disgrasful and it should go away.g g y

 Why do we think horibl should be horrible and not broccoli or 
quixotic?

 May sound like a silly question, but one of the keys to speech 
recognition
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Why is Garbled Text Recgonizable?Why is Garbled Text Recgonizable?
 Possible reasons:

 Words “look” recognizable, barring spelling errors
 E g  publik E.g. publik

 Words “sound” recognizable when sounded out
 E.g. urop

 Context provides additional cluesContext provides additional clues
 E.g. oza in “ … each oza.”

 Of these  which is the most rudimentary?  Most complex? Of these, which is the most rudimentary?  Most complex?
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How to Automate German How to Automate German --> English?> English?
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How to Automate German How to Automate German --> English?> English?
 Start with simple problem:

 Treat each word in isolation
 Handle spelling errors only (surface feature) Handle spelling errors only (surface feature)

 In other words:
I  “ di  lik ” d “ t t” t Ignore “sounding like” and “context” aspects
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How to Automate German How to Automate German --> English?> English?
Input word

Word1

Word2

compare

compare

Word3 compare Best

Word-N compare

 Only unknown: The compare box
 Exactly what is the comparison algorithm?

Dictionary
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Relation to Speech Recognition?Relation to Speech Recognition?
Spoken input word

Word1

Word2

compare

compare

Word3 compare Best

Word-N compare

 Isolated word recognition scenario

Recordings (templates)
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Problems in Comparing Speech?Problems in Comparing Speech?
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Problems in Comparing Speech?Problems in Comparing Speech?
 No two spoken versions identical

 Individual’s unique voice
 Gender Gender

 Speaking rate
 Speaking style
 Accent Accent
 Background condition
 And so on…

 So  looking for an exact match won’t work So, looking for an exact match won t work

 Fi t  l  t t t i  i  bl First, solve text string comparison problem
 Then, apply it to speech
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String ComparisonString Comparison
 If the only spelling mistakes involve substitution errors, 

comparison is easy:
 Line up the words  letter-for-letter  and count the number of  Line up the words, letter for letter, and count the number of 

corresponding letters that differ:

P  U  B  L  I  KU
P  U  B  L  I  C

P  U  B  L  I  KP  U  B  L  I  K
P  E  O  P  L  E

 But what about words like agre (agree)?  How do we “line up” 
the letters?
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String ComparisonString Comparison
 In general, we consider three types of string errors:

 Substitution: a template letter has been changed in the input
 Insertion: a spurious letter is introduced in the input Insertion: a spurious letter is introduced in the input
 Deletion: a template letter is missing from the input

 Th    k   diti  ti These errors are known as editing operations

P  U  B  L  I  K
P  U  B  L  I  CP  U  B  L  I  C

A  G  R      E
GA  G  R  E E

P  O  T  A  T  O  E
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String ComparisonString Comparison
 Why did we pick the above alignments?  Why not some 

other alignment of the letters:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E
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String ComparisonString Comparison
 Why did we pick the above alignments?  Why not some 

other alignment:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E

 Because these alignments exhibit a greater edit distance 
than the “correct” alignment
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String Comparison ProblemString Comparison Problem
 Given two arbitrary strings, find the minimum edit distance

between the two:
 Edit distance = the minimum number of editing operations Edit distance = the minimum number of editing operations

needed to convert one into the other
 Editing operations: substitutions, insertions, deletions
 Often, the distance is also called costO te , t e d sta ce s a so ca ed cost

 This minimum distance is a measure of the dissimilarity
between the two strings

 Also called the Levenshtein distance

 Remember there is always Wikipedia to learn more!
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String Comparison ProblemString Comparison Problem
 How do we compute this minimum edit distance?
 With words like agre and publik, we could eyeball and 

“guess” the correct alignmentguess  the correct alignment

 Such words are familiar to us
 But we cannot “eyeball and guess” with unfamiliar words

 Corollary: ALL words are unfamiliar to computers!
 We need an algorithm
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String Comparison ExampleString Comparison Example
 Hypothetical example of unfamiliar word:

 Template: ABBAAACBADDA
 Input: CBBBACCCBDDDDA Input: CBBBACCCBDDDDA

DB B A C B DA Atemplate

i t

A A A

DDC CB

B

B

A C B D DC Ainput

insertions

deletionssubstitution

 Other alignments are possible
 Which is the “correct” (minimum distance) alignment?
 N d  l ith  t  t  thi !

25 Jan 2010 19

 Need an algorithm to compute this!



String Edit Distance ComputationString Edit Distance Computation
 Measuring edit distance is best visualized as a 2-D diagram of the 

template being aligned or warped to best match the input
 Two possible alignments of template to input are shown, in blue and red

A
A B C D E F G input

B
C
X
Y

= Correct or substituted
= Input character inserted

The arrow directions have specific meaning:

Y
Z

t l t

= Template character deleted

A  B  C  X  Y  Z Distance = 4}template A  B  C  D  E  F  G

A  B      C      X  Y  Z
A  B  C  D  E  F      G

Distance = 4

Distance = 5

}
}
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Minimum String Edit DistanceMinimum String Edit Distance
 This is an example of a search problem, since we need to 

search among all possible paths for the best one

 First possibility: Brute force search
 Exhaustive search through all possible paths from top-left to 

bottom-right,  and choose path with minimum costbotto g t, a d c oose pat t u cost
 But, computationally intractable; exponentially many paths!

 (Exercise: Exactly how many different paths are there?)
 (A path is a connected sequence made up of the three types of ( p q p yp

arrows: diagonal, vertical and horizontal steps)

 Solution: Dynamic Programming (DP)
 Find optimal (minimum cost) path by utilizing (re-using) optimal 

sub-paths
 Central to virtually all major speech recognition systems
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Minimum String Edit Distance: DPMinimum String Edit Distance: DP
 Central idea: formulate optimal path to any intermediate point X in 

the matrix in terms of optimal paths of all its immediate predecessors
 Let MX = Min. path cost from origin to any pt. X in matrix
 Say, A, B and C are all the predecessors of X
 Assume MA, MB and MC are known (shown by dotted lines)

 Then, MX = min (MA+AX, MB+BX, MC+CX)
 AX = edit distance for diagonal transition

= 0 if the aligned letters are same, 1 if not)
 BX = edit distance for vertical transition

BA

C
= 1 (deletion)

 CX = edit distance for horizontal transition
= 1 (insertion)

X
C
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Minimum String Edit Distance: DPMinimum String Edit Distance: DP
 Hence, start from the origin, and compute min. path cost for every 

matrix entry, proceeding from top-left to bottom right corner

 Proceed methodically, once column (i.e. one input character) at a 
time:
 Consider each input character, one at a time
 Fill out min. edit distance for that entire column before moving on to 

next input character
 Forces us to examine every unit of input (in this case, every character) 

one at a time
 Allows each input character to be processed as it becomes available 

(“online” operation possible)

 Mi  dit di t   l  t b tt  i ht  Min. edit distance = value at bottom right corner
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DP ExampleDP Example
 First, initialize top left corner, aligning the first letters

A
A B C D E F G
0 A

A B C D E F G
0A

B
C
X

0 A
B
C
X

0
1

2

3

Y
Z

Y
Z

4
5

A B C D E F G A B C D E F G
A
B
C

A B C D E F G
0 1
1 0

2 1

A
B
C

A B C D E F G
0 1 2
1 0 1

2 1 0C
X
Y
Z

2 1

3 2

4 3
5 4

C
X
Y
Z

2 1 0

3 2 1

4 3 2
5 4 3
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DP Example (contd.)DP Example (contd.)

A
B

A B C D E F G
0 1 2 3
1 0 1 2

A
B

A B C D E F G
0 1 2 3 4
1 0 1 2 3

C
X
Y

2 1 0 1

3 2 1 1

4 3 2 2

C
X
Y

2 1 0 1 2

3 2 1 1 2

4 3 2 2 2

Z 5 4 3 3 Z 5 4 3 3 3

A
A B C D E F G
0 1 2 3 4 5 6A

A B C D E F G
0 1 2 3 4 5

B
C
X

1 0 1 2 3 4 5

2 1 0 1 2 3 4

3 2 1 1 2 2 3

B
C
X

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 1 2 2

 Min. edit distance (ABCXYZ, ABCDEFG) = 4

Y
Z

4 3 2 2 2 3 3
5 4 3 3 3 3 4

Y
Z

4 3 2 2 2 3
5 4 3 3 3 3
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A Little Diversion: Algorithm BugA Little Diversion: Algorithm Bug
 The above description and example has a small bug.  What is 

it?
 Hint: Consider input and template: urop and europe Hint: Consider input and template: urop and europe

 What is their correct minimum edit distance?  (Eyeball and 
guess!)

 What does the above algorithm produce? What does the above algorithm produce?

 Exercise: How can the algorithm be modified to fix the bug?
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DP: Finding the Best AlignmentDP: Finding the Best Alignment
 The algorithm so far only finds the cost, not the alignment itself 
 How do we find the actual path that minimizes edit distance?

 There may be multiple such paths, any one path will suffice

 To determine the alignment, we modify the algorithm as follows
 Whenever a cell X is filled in, we maintain a back-pointer from X to 

it  d  ll th t l d t  th  b t  f  Xits predecessor cell that led to the best score for X
 Recall MX = min (MA+AX, MB+BX, MC+CX)
 So, if MB+BX happens to be the minimum

we create a back-pointer X->B

Back-pointer

we create a back pointer X >B
 If there are ties, break them arbitrarily

 Thus, every cell has a single back-pointer X

BA

C

 At the end, we trace back from the final cell to the origin, using the 
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Finding the Best Alignment: ExampleFinding the Best Alignment: Example
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DP TrellisDP Trellis
 The 2-D matrix, with all possible transitions filled in, is called the 

search trellis
 Horizontal axis: time.  Each step deals with the next input unit (in this 

case, a text character)
 Vertical axis: Template (or model)

 Search trellis for the previous example:

A B C D E F G
A

B

Change of notation: 
nodes = matrix cellsB

C

XX

Y

Z
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DP TrellisDP Trellis
 DP does not require that transitions be limited to the three types 

used in the example
 The primary requirement is that the optimal path be computable p y q p p p

recursively, based on a node’s predecessors’ optimal sub-paths
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DP Trellis (contd.)DP Trellis (contd.)
 The search trellis is arguably one of the most crucial concepts 

in modern day speech recognizers!
 We will encounter this again and again We will encounter this again and again

 Just about any decoding problem is usually cast in terms of 
such a trellissuch a trellis

 It is then a matter of searching through the trellis for the best 
pathpath
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Computational Complexity of DPComputational Complexity of DP
 Computational cost ~

No. of  nodes  x  No. of edges entering each node
 For string matching  this is: For string matching, this is:

String-length(template)  x  String-length(input)  x  3
 (Compare to exponential cost of brute force search!)

 Memory cost for string matching?
 No of nodes (String-length(template)  x  String-length(input))?
 Actually  we don’t need to store the entire trellis if all we want is  Actually, we don’t need to store the entire trellis if all we want is 

the min. edit distance (i.e. not the alignment; no back pointers)
 Since each column depends only on the previous, we only need 

storage for 2 columns of the matrixstorage for 2 columns of the matrix
 The current column being computed and the previous column

 Actually, in most cases a column can be updated in-place
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Back to German Back to German --> English> English
Input word

Edit distances

Word1

Word2

DP    

DP    

Word3 DP    Best

Word-N DP    

 Compare box = DP computation of minimum edit distance
 A separate DP trellis for each dictionary word (?)

Dictionary
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Optimization: Trellis SharingOptimization: Trellis Sharing
 Consider templates horrible, horrid, horde being matched 

with input word horibl

H O R I B

H

L

O

H O R I B

H

L

O

H O R I B

H

L

O
R
R
I
B

R
R
I
D

R
D
E

B
L
E

D

 Trellises shown above
 Colors indicate identical contents of trellis

 H    id thi  d li ti  f t ti ?
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Optimization: Trellis SharingOptimization: Trellis Sharing
 Compute only the unique subsets (sub-trellises)
 Allow multiple successors from a given sub-trellis

H O R I B

H

L

O

H O R I B

H

L

O

H O R I B

H

L

O
R

R
I

R
R
I
B

R
R
I
D

B
L
E

B
L
E

D

H O R I B

H

L

D
E

DO
R
D
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Trellis Sharing => Template SharingTrellis Sharing => Template Sharing
 Notice that templates have become fragmented!
 Derive new template network to facilitate trellis sharing:

H O R I B

H

L

O B   L   E horrible

H   O   R

R

R
I

R   I

D h id

D   E

H   O   R
B
L
E

D horrid

horde

D
E

D
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Template Sharing Template Sharing --> Lexical Trees> Lexical Trees
 Take it one step further

 Break down individual blocks:
B   L   E horrible

H   O   R

R   I

D horrid

D   E horde

 We get: Lexical tree model:

IR

LB E
horrible

OH R D horrid
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Building Lexical TreesBuilding Lexical Trees
 Original templates were linear or flat models:

OH R IR B L E

OH R IR D

 Exercise: How can we convert this collection to a lexical tree?

OH R ED

 Exercise: How can we convert this collection to a lexical tree?
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Trellises for Lexical TreesTrellises for Lexical Trees
 We saw that it is desirable to share sub-trellises, to reduce 

computation
 We saw the connection between trellis sharing and  We saw the connection between trellis sharing and 

structuring the templates as lexical trees
 You now (hopefully!) know how to construct lexical trees

 Q: Given a lexical tree representing a group of words, what 
does its search trellis look like?

 A: 
 Horizontal axis: time (input characters), as before
 Vertical axis: nodes in the model (lexical tree nodes)
 Trellis transitions: nothing but the transitions in the lexical tree, 

unrolled over time
 We are stepping the model one input unit at a time, and looking at 

its state at each step
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Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

S

H
insertion

K
deletion
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Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

i+2

S

H
insertion

K
deletion
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Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

i+2 i+3

S

H
insertion

ash

K
deletionask

Leaf nodes
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Search Trellis for Graphical ModelsSearch Trellis for Graphical Models
 The scheme for constructing trellises from lextree models applies to 

any graphical model

 Note that the simple trellis of slide 29 follows directly from this 
scheme, where the model is a degenerate, linear structure:

A B C D E F G
A

B

C

X

Y

Z

25 Jan 2010 43



Summary: Elements of the Search TrellisSummary: Elements of the Search Trellis
 Nodes represent the cells of the DP matrix
 Edges are the allowed transitions according to some model of the 

problemp
 In string matching we allow substitutions, insertions, and deletions

 Every edge optionally has an edge cost for taking that edge
 Every node optionally has a local node cost for aligning the y p y g g

particular input entry to the particular template entry
 The node and edge costs used depend on the application and model

 Th  DP l ith  t  d  i t i   th t f  th  b t  The DP algorithm, at every node, maintains a path cost for the best 
path from the origin to that node
 In string matching, this cost is the substring minimum edit distance
 Path costs are computed by accumulating local node and edge costs  Path costs are computed by accumulating local node and edge costs 

according to the recursive formulation already seen (minimizing cost)

 One may also use a similarity measure, instead of dissimilarity
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 In this case DP algorithm should try to maximize the total path score



Edge and Node Costs for String MatchEdge and Node Costs for String Match
 Edge costs:

x x

1 1 0 1

x y

insertion deletion correct substitution

 Local node costs: None
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Reducing Search Cost: PruningReducing Search Cost: Pruning
 Reducing search cost implies reducing the size of the lattice that has 

to be evaluated

 There are several ways to accomplish this
 Reducing the complexity and size of the models (templates)

 E.g. using lextrees (and thereby sharing trellis computation)
 We have already seen this above We have already seen this above

 Eliminating parts of the lattice from consideration altogether
 This approach is called search pruning, or just pruning

 Basic consideration in pruning: As long as the best cost path is not 
eliminated by pruning, we obtain the same result
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PruningPruning
 Pruning is a heuristic: typically, there is a threshold on some 

measured quantity, and anything above or below the threshold is 
eliminated

 It is all about choosing the right measure, and the right threshold

 Let us see two different pruning methods:
 Based on deviation from the diagonal path in the trellis
 Based on path costs

25 Jan 2010 47



Pruning by Limiting Search PathsPruning by Limiting Search Paths
 Assume that the the input and the best matching template do not 

differ significantly from each other
 The best path matching the two will lie close to the “diagonal”

 Thus, we need not search far off the diagonal.  If the search-space 
“width” is kept constant, cost of search is linear in utterance length 
instead of quadratic

eliminated

search 
region

Trellis

eliminated
width
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Pruning by Limiting Search PathsPruning by Limiting Search Paths
 What are problems with this approach?

25 Jan 2010 49



Pruning by Limiting Search PathsPruning by Limiting Search Paths
 What are problems with this approach?

 With lexical tree models, the notion of “diagonal” becomes 
difficultdifficult
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Option 2: Pruning by Limiting Path CostOption 2: Pruning by Limiting Path Cost
 Observation: Partial paths that have “very high” costs will rarely 

recover to win
 Hence, poor partial paths can be eliminated from the search:, p p p

 For each frame j, after computing all the trellis nodes path costs, 
determine which nodes have too high costs

 Eliminate them from further exploration
 Q  H  d   d fi  “hi h ”? Q: How do we define “high cost”?

jorigin
High cost partial paths (red);

D   l  f hDo not explore further

partial 
best paths
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
 Problem: Absolute path cost increases monotonically with input 

length!length!
 Thresholds have to be loose enough to allow for the longest inputs
 But such thresholds will be too permissive at shorter lengths, and 

not constrain computation effectively

 How can we overcome this?
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
 Problem: Absolute path cost increases monotonically with input 

length!length!
 Thresholds have to be loose enough to allow for the longest inputs
 But such thresholds will be too permissive at shorter lengths, and 

not constrain computation effectively

 How can we overcome this?
 Solution: Look at relative path cost instead of absolute path costp p
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Pruning: Beam SearchPruning: Beam Search
 Solution: At each time step j, set the pruning threshold by a 

fixed amount T relative to the best cost at that time
 I e  if the best partial path cost achieved at time t is X  prune  I.e. if the best partial path cost achieved at time t is X, prune 

away all nodes with partial path cost > X+T before moving to 
time t+1

 Advantages:
 Unreliability of absolute path costs is eliminated
 Monotonic growth of path costs with time is also irrelevant Monotonic growth of path costs with time is also irrelevant

 Search that uses such pruning is called beam search
 This is the most widely used search optimization strategy This is the most widely used search optimization strategy

 The relative threshold T is usually called beam width or just 
beam
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Determining the Optimal Beam WidthDetermining the Optimal Beam Width
 Determining the optimal beam width to use is crucial

 Using too narrow or tight a beam (too low T) can prune the best 
path and result in too high a match cost, and errorspath and result in too high a match cost, and errors

 Using too large a beam results in unnecessary computation in 
searching unlikely paths

 Unfortunately, there is no mathematical solution to 
determining an optimal beam width

 Common method: Try a wide range of beams on some test  Common method: Try a wide range of beams on some test 
data until the desired operating point is found
 Need to ensure that the test data are somehow representative of 

actual speech that will be encountered by the applicationp y pp
 The operating point may be determined by some combination of 

recognition accuracy and computational efficiency
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ConclusionConclusion
 Minimum string edit distance
 Dynamic programming search to compute minimum edit 

distancedistance
 Lextree construction for compact templates
 Graphical models
 Search trellis construction for given graphical models
 Search pruning

 Application to speech:
 All concepts learned with strings apply to speech recognition!
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Application of DP String MatchingApplication of DP String Matching
 How might google recognize “Ravi Shanker” as a mistyped 

version of “Ravi Shankar”?
 One hypothetical heuristic: One hypothetical heuristic:

 Google maintains a list of highly popular query strings
 These are the templates; “Ravi Shankar” is one of them

 When a user types in a query  it is string-matched to every  When a user types in a query, it is string matched to every 
template, using DP

 If a template matches exactly, there is no spelling error
 If a single template has one overall error (edit distance = 1), If a single template has one overall error (edit distance  1), 

google can ask Did you mean “…”
 Otherwise, do nothing

 Either multiple templates have edit distance = 1, or
 Minimum edit distance > 1

 Here, we see the implicit introduction of a confidence measure
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DTW: DP for Speech Template MatchingDTW: DP for Speech Template Matching
 Back to template matching for speech: dynamic time warping

 Input and templates are sequences of feature vectors instead of 
lettersletters

 Intuitive understanding of why DP-like algorithm might work 
to find a best alignment of a template to the input:to find a best alignment of a template to the input:
 We need to search for a path that finds the following alignment:

template s o me th i ng

input s o me th i ng

 Consider the 2-D matrix of template-input frames of speech
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DTW: DP for Speech Template MatchingDTW: DP for Speech Template Matching
s o me th i ng

Need to find 
something like 
this warped path
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DTW: Adapting Concepts from DPDTW: Adapting Concepts from DP
 Some concepts from string matching need to be adapted to 

this problem
 What are the allowed set of transitions in the search trellis? What are the allowed set of transitions in the search trellis?
 What are the edge and local node costs?

 Once these questions are answered  we can apply essentially  Once these questions are answered, we can apply essentially 
the same DP algorithm to find a minimum cost match (path) 
through the search trellis
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DTW: Determining TransitionsDTW: Determining Transitions
 Recall that transitions are derived from a conceptual model of 

how a template might have to be distorted to match the input

 The main modes of distortion are stretching and shrinking of 
speech segments, owing to different speaking rates
 Of course, we do not know a priori what the distortion looks like Of course, we do not know a priori what the distortion looks like

 Also, since speech signals are continuous valued instead of 
discrete, there is really no notion of insertiondiscrete, there is really no notion of insertion
 Every input frame must be matched to some template frame

 For meaningful comparison of two different path costs, their  For meaningful comparison of two different path costs, their 
lengths must be kept the same
 So, every input frame is to be aligned to a template frame 

exactly once
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DTW: TransitionsDTW: Transitions
 Typical transitions used in DTW for speech:

The next input frame aligns to the same template frame as p g p
the previous one.  (Allows a template segment to be 
arbitrarily stretched to match some input segment)

The next input frame aligns to the next template frame   The next input frame aligns to the next template frame.  
No stretching or shrinking occurs in this region

The next input frame skips the next template frame and The next input frame skips the next template frame and 
aligns to the one after that.  Allows a template segment to 
be shrunk (by at most ½) to match some input segment

 Note that all transitions move one step to the right, ensuring 
that each input frame gets used exactly once along any path
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DTW: Use of Transition TypesDTW: Use of Transition Types

Short template, long input
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DTW: Other Transition ChoicesDTW: Other Transition Choices
 Other transition choices are possible:

 Skipping more than one template frame (greater shrink rate)
 Vertical transitions: the same input frame matches more than  Vertical transitions: the same input frame matches more than 

one template frame
 This is less often used, as it can lead to different path lengths, 

making their costs not easily comparable
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DTW: Local Edge and Node CostsDTW: Local Edge and Node Costs
 Typically, there are no edge costs; any edge can be taken with no 

cost
 Local node costs measure the dissimilarity or distance between the y

respective input and template frames
 Since the frame content is a multi-dimensional feature-vector, what 

dissimilarity measure can we use?
 A simple measure is Euclidean distance; i.e. geometrically how far 

one point is from the other in the multi-dimensional vector space
 For two vectors X = (x1, x2, x3 … xN), and Y = (y1, y2, y3… yN), the 

Euclidean distance between them is:Euclidean distance between them is:

√xi-yi)2, i = 1 .. N

 Thus, if X and Y are the same point, the Euclidean distance = 0
 The farther apart X and Y are, the greater the distance
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DTW: Local Edge and Node CostsDTW: Local Edge and Node Costs
 Other distance measure could also be used:

 Manhattan metric or the L1 norm:  |Ai – Bi|

 Weighted Minkowski norms: (wi|Ai – Bi|n)1/n
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DTW: Overall algorithmDTW: Overall algorithm
 The transition structure and local edge and node costs are 

now defined
 The search trellis can be realized and the DP algorithm  The search trellis can be realized and the DP algorithm 

applied to search for the minimum cost path, as before
 Example trellis using the transition types shown earlier:

t=0 1 2 3 4 5 6 7 8 9 10 11
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DTW: Overall Algorithm (contd.)DTW: Overall Algorithm (contd.)
 Let Pi,j = the best path cost from origin to node [i,j]

(i.e., where i-th template frame aligns with j-th input frame)
 Let Ci,j = the local node cost of aligning template frame i toi,j g g p

input frame j (Euclidean distance between the two vectors)
 Then, by the DP formulation:

P  min (P + C   P + C   P + C )Pi,j = min (Pi,j-1 + Ci,j,  Pi-1,j-1 + Ci,j,  Pi-2,j-1 + Ci,j)
= min (Pi,j-1,  Pi-1,j-1,  Pi-2,j-1) + Ci,j

 Remember edge costs are 0, otherwise they should be added to the g , y
costs

 If the template is m frames long and the input is n frames long, the 
best alignment of the two has the cost =  Pbest alignment of the two has the cost   Pm,n

 Note: Any path leading to an internal node (i.e. not m,n) is called a 
partial path
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DTW: Computational CostDTW: Computational Cost
 As with DP, the computational cost for the above DTW is 

proportional to:
M x N x 3  whereM x N x 3, where
M = No. of frames in the template
N = No. of frames in the input
3 is the number of incoming edges per node
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Handling Surrounding SilenceHandling Surrounding Silence
 The DTW algorithm automatically handles any silence region 

surrounding the actual speech, within limits:

silence

speech

 But  the transition structure does not allow a region of the  But, the transition structure does not allow a region of the 
template to be shrunk by more than ½ !
 Need to ensure silences included in recording are of generally 

consistent lengths, or allow other transitions to handle a greater 
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Isolated Word Recognition Using DTWIsolated Word Recognition Using DTW
 We now have a method for measuring the best match of a 

template to the input speech

 How can we apply this to perform isolated word recognition?
 For each word in the vocabulary, pre-record a spoken example 

(its template)( ts te p ate)
 For a given input utterance, measure its minimum distance to 

each template using DTW
 Choose the template that delivers the smallest distance

 As easy as that!
 Could implement this on a cell phone for dialingp p g

 Is there an efficient way to do this?
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Time Synchronous SearchTime Synchronous Search
 Since input frames are processed 

sequentially, the input speech can be 
matched to all templates simultaneously 1

Input

 The figure shows three such matches going 
on in parallel

 Essentially, every template match is 
t t d i lt l  d t d 

Te
m

pl
at

e1

started simultaneously and stepped 
through the input in lock-step fashion
 Hence the term time synchronous

 Advantages Te
m

pl
at

e2

 Advantages
 No need to store the entire input for 

matching with successive templates
 Matching can proceed as the input comes in e3

 Enables pruning for computational efficiency 
(as we will see later)

 Other advantages in continuous speech 
recognition (will be seen later)

Te
m
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at

e
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Example: Isolated Speech Based DictationExample: Isolated Speech Based Dictation

 We could, in principle, almost build a large vocabulary 
dictation application using the techniques learned so far
 Each word is spoken in isolation  i e silence after every word Each word is spoken in isolation, i.e. silence after every word
 Need a template for every word in vocabulary
 Accuracy would probably be terrible

 Many words have very similar acoustics in a large vocabulary system  Many words have very similar acoustics in a large vocabulary system 
e.g. STAR/SCAR, MEAN/NEEM, DOOR/BORE

 We need additional techniques for improving accuracy (later)
 But, in principle, one can be built, except…

 How does such an application know when a word is spoken?
 Explicit “click-to-speak”, “click-to-stop” button clicks from user, 

f   d?for every word?
 Obviously extremely tedious

 Need a speech/silence detector!
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SpeechSpeech--Silence Detection: EndpointerSilence Detection: Endpointer

sil this    sil is        sil isolated    sil word   sil speech  sil
silence segments

 Without explicit signals from the user, can the system 
automatically detect pauses between words, and segment the 

h l d d

silence segments

speech stream into isolated words?
 Such a speech/silence detector is called an endpointer

 Detects speech/silence boundaries (shown by dotted lines)
 Words can be isolated by choosing speech segments between 

midpoints of successive silence segments
 Most speech applications use such an endpointer to relieve 
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A Simple Endpointing SchemeA Simple Endpointing Scheme
 Based on silence segments having low signal amplitude

 Usually called energy-based endpointing

 The raw audio samples stream is processed as a short sequence of 
frames (as for feature extraction)

 The signal energy in each frame is computed
 Typically in decibels (dB):  10 log (xi2), where xi are the sample values 

in the frame
 A pre-defined threshold is used to classify each frame as speech or 

silencesilence
 The labels are smoothed to eliminate spurious labels due to noise

 E.g. minimum silence and speech segment length limits may be imposed
 A very short speech segment buried inside silence may be treated as y p g y

silence

 This scheme works reasonably well under quiet background 
conditions
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Isolated Speech Based Dictation (Again)Isolated Speech Based Dictation (Again)
 With such an endpointer, we have all the tools to build a 

complete, isolated word recognition based dictation system, 
or any other applicationor any other application

 However, as mentioned earlier, accuracy is a primary issue 
when going beyond simple  small vocabulary situationswhen going beyond simple, small vocabulary situations
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Dealing with Recognition ErrorsDealing with Recognition Errors
 Applications can use several approaches to deal with speech 

recognition errors
 Primary method: improve performance by using better  Primary method: improve performance by using better 

models in place of simple templates
 We will consider this later

 However  in addition to basic recognition  most systems also  However, in addition to basic recognition, most systems also 
provide other, orthogonal mechanisms for applications to deal
with errors
 Confidence estimation Confidence estimation
 Alternative hypotheses generation (N-best lists)

 We now consider these two mechanisms, briefly
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Confidence ScoringConfidence Scoring
 Observation: DP or DTW will always deliver a minimum cost 

path, even if it makes no sense
 Consider string matching: Consider string matching:

Yesterday
templates

input 7
min. edit distance

Today

Tomorrow

January
input

5

7

 The template with minimum edit distance will be chosen, 
even though it is “obviously” incorrecteven though it is obviously  incorrect
 How can the application discover that it is “obviously” wrong?

 Confidence scoring is the problem of determining how 
confident one can be that the recognition is “correct”
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Confidence Scoring for Confidence Scoring for String MatchString Match
 A simple confidence scoring scheme: Accept the matched 

template string only if the cost <= some threshold
 We encountered its use in the hypothetical google search string  We encountered its use in the hypothetical google search string 

example!

 This treats all template strings equally, regardless of lengthp g q y, g g
 Or: Accept if cost <= 1 + some fraction (e.g. 0.1) of 

template string length
 Templates of 1-9 characters tolerate 1 error Templates of 1 9 characters tolerate 1 error
 Templates of 10-19 characters tolerate 2 errors, etc.

 Easy to think of other possibilities, depending on the 
applicationapplication

 Confidence scoring is one of the more application-dependent 
functions in speech recognition

25 Jan 2010 81

functions in speech recognition



Confidence Scoring for DTWConfidence Scoring for DTW
 Can we use similar thresholding technique for template 

matching using DTW?
 Unlike in string matching  the cost measures are not  Unlike in string matching, the cost measures are not 

immediately, meaningfully “accessible” values
 Need to know range of minimum cost when correctly matched 

and when incorrectly matched
 If the ranges do not overlap, one could pick a threshold

Overlap region susceptible 
to classification errors

threshold

to classification errors

cost

Distribution of DTW 
costs of correctly 
identified templates

Distribution for 
incorrectly identified 
templates
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Confidence Scoring for DTWConfidence Scoring for DTW
 As with string matching, the DTW cost may have to be 

normalized
 Use DTW cost / frame of input speech  instead of total DTW  Use DTW cost / frame of input speech, instead of total DTW 

cost, before determining threshold
 Cost distributions and threshold have to be determined 

empirically, based on a sufficient collection of test dataempirically, based on a sufficient collection of test data

 Unfortunately  confidence scores based on such distance  Unfortunately, confidence scores based on such distance 
measures are not very reliable
 Too great an overlap between distribution of scores for correct 

and incorrect templatesand incorrect templates
 We will see other, more reliable methods later on
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NN--best List Generationbest List Generation
 Example: Powerpoint catches spelling errors and offers 

several alternatives as possible corrections
 Example: In the isolated word dictation system  Dragon  Example: In the isolated word dictation system, Dragon 

Dictate, one can select a recognized word and obtain 
alternatives
 Useful if the original recognition was incorrect Useful if the original recognition was incorrect

 Basic idea: identifying not just the best match, but the top so 
many matches; i.e., the N-best listmany matches; i.e., the N best list

 Not hard to guess how this might be done, either for string 
matching or isolated word DTW!matching or isolated word DTW!
 (How?)
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Improving Accuracy: Multiple TemplatesImproving Accuracy: Multiple Templates
 Problems with using a single exemplar as a template

 New instances of a word can differ significantly from it
 Makes template matching highly brittle Makes template matching highly brittle
 Works only with small vocabulary of very distinct words
 Works poorly across different speakers

 What if we use multiple templates for each word to handle at e use u t p e te p ates o eac o d to a d e
the variations?
 Preferably collected from several speakers

 Template matching algorithm is easily modified Template matching algorithm is easily modified
 Simply match against all available templates and pick the best

 However  computational cost of matching increases linearly  However, computational cost of matching increases linearly 
with the number of available templates
 Remember matching each template cost ~ (Template length x 

Input length x 3)
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Reducing Search Cost: PruningReducing Search Cost: Pruning
 Reducing search cost implies reducing the size of the lattice that has 

to be evaluated

 There are several ways to accomplish this
 Reducing the complexity and size of the models (templates)

 E.g. replacing the multiple templates for a word by a single, average one
Eli i i   f h  l i  f  id i  l h Eliminating parts of the lattice from consideration altogether
 This approach is called search pruning, or just pruning

 We consider pruning first

 Basic consideration in pruning: As long as the best cost path is not 
eliminated by pruning, we obtain the same result
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PruningPruning
 Pruning is a heuristic: typically, there is a threshold on some 

measured quantity, and anything above or below is eliminated

 It is all about choosing the right measure, and the right threshold

 Let us see two different pruning methods:p g
 Based on deviation from the diagonal path in the trellis
 Based on path costs
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Pruning by Limiting Search PathsPruning by Limiting Search Paths
 Assume that the speaking rates between the template and the input 

do not differ significantly
 There is no need to consider lattice nodes far off the diagonalg
 If the search-space “width” is kept constant, cost of search is linear 

in utterance length instead of quadratic
 However, errors occur if the speaking rate assumption is violated

 i.e. if the template needs to be warped more than allowed by the width

eliminated

search 
i

eliminated

lattice
region

eliminated
width
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 Observation: Partial paths that have “very high” costs will rarely 

recover to win
 Hence, poor partial paths can be eliminated from the search:, p p p

 For each frame j, after computing all the trellis nodes path costs, 
determine which nodes have too high costs

 Eliminate them from further exploration
(A ti  I   f  th  b t ti l th h  l  t) (Assumption: In any frame, the best partial path has low cost)

 Q: How do we define “high cost”?
jorigin

High cost partial paths (red);High cost partial paths (red);
Do not explore further

partial 
b t th
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 As with confidence scoring, one could define high path cost as 

a value worse than some fixed threshold
 But  as already noted  absolute costs are unreliable indicators of  But, as already noted, absolute costs are unreliable indicators of 

correctness 
 Moreover, path costs keep increasing monotonically as search 

proceeds
 Recall the path cost equation

Pi,j = min (Pi,j-1,  Pi-1,j-1,  Pi-2,j-1) + Ci,j

 Fixed threshold will not work
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Pruning: Beam SearchPruning: Beam Search
 Solution: In each frame j, set the pruning threshold by a 

fixed amount T relative to the best cost in that frame
 I e  if the best partial path cost achieved in the frame is X   I.e. if the best partial path cost achieved in the frame is X, 

prune away all nodes with partial path cost > X+T
 Note that time synchronous search is very efficient for 

implementing the above

 Advantages:
 Unreliability of absolute path costs is eliminated Unreliability of absolute path costs is eliminated
 Monotonic growth of path costs with time is also irrelevant

 Search that uses such pruning is called beam search Search that uses such pruning is called beam search
 This is the most widely used search optimization strategy

 The relative threshold T is usually called beam width or just 
beam
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Beam Search VisualizationBeam Search Visualization
 The set of lattice nodes actually evaluated is the active set
 Here is a typical “map” of the active region, aka beam (confusingly)

active 
region

 Presumably  the best path lies somewhere in the active region

(beam)
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Beam Search EfficiencyBeam Search Efficiency
 Unlike the fixed width approach, the computation reduction with 

beam search is unpredictable
 The set of active nodes at frames j and k is shown by the black lines

 However, since the active region can follow any warping, it is likely 
to be relatively more efficient than the fixed width approach

j k

ti  active 
region
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Determining the Optimal Beam WidthDetermining the Optimal Beam Width
 Determining the optimal beam width to use is crucial

 Using too narrow or tight a beam (too low T) can prune the best 
path and result in too high a match cost, and errorspath and result in too high a match cost, and errors

 Using too large a beam results in unnecessary computation in 
searching unlikely paths

 One may also wish to set the beam to limit the computation y p
(e.g. for real-time operation), regardless of recognition errors

 Unfortunately, there is no mathematical solution to 
determining an optimal beam width

 Common method: Try a wide range of beams on some test 
data until the desired operating point is found
 Need to ensure that the test data are somehow representative of p

actual speech that will be encountered by the application
 The operating point may be determined by some combination of 

recognition accuracy and computational efficiency
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Determining the Optimal Beam WidthDetermining the Optimal Beam Width

r 
ra
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W

or
d 
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r
W

 Any value around the point marked T is a reasonable beam 
for minimizing word error rate (WER)

Beam widthT

for minimizing word error rate (WER)
 A similar analysis may be performed based on average CPU 

usage (instead of WER)
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Beam Search Applied to RecognitionBeam Search Applied to Recognition
 Thus far, we considered beam search to prune search paths within a 

single template 
 However, its strength really becomes clear in actual recognition (i.e. , g y g (

time synchronous search through all templates simultaneously)
 In each frame, the beam pruning threshold is determined from the 

globally best node in that frame (from all templates)
 P i  i  f d l b ll  b d  thi  th h ld Pruning is performed globally, based on this threshold
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Beam Search Applied to RecognitionBeam Search Applied to Recognition
 The advantage of simultaneous time-

synchronous matching of multiple 
templates:

Input

3

 Beams can be globally applied to all 
templates

 We use the best score of all template 
frames (trellis nodes at that instant) to 

Te
m

pl
at

e3

frames (trellis nodes at that instant) to 
determine the beam at any instant

 Several templates may in fact exit 
early from contention

Te
m

pl
at

e2

 In the ideal case, the computational 
cost will be independent of the number 
of templates e3p
 All competing templates will exit very 

early
 Ideal cases don’t often occur Te

m
pl

at
e
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Pruning and Dynamic Trellis AllocationPruning and Dynamic Trellis Allocation
 Since any form of pruning eliminates many trellis nodes from 

being expanded, there is no need to keep them in memory
 Trellis nodes and associated data structures can be allocated on  Trellis nodes and associated data structures can be allocated on 

demand (i.e. whenever they become active)
 This of course requires some book-keeping overhead

 May not make a big difference in small vocabulary systems
 But pruning is an essential part of all medium and large 

vocabulary systemsvocabulary systems
 The search trellis structures in 20k word applications take up 

about 10MB with pruning
 Without pruning, it would require perhaps 10 times as much!p g, q p p
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Recognition Errors Due to PruningRecognition Errors Due to Pruning
 Speech recognition invariably contains errors
 Major causes of errors:

 Inadequate or inaccurate models Inadequate or inaccurate models
 Templates may not be representative of all the variabilities in speech

 Search errors
 Even if the models are accurate  search may have failed because it  Even if the models are accurate, search may have failed because it 

found a sub-optimal path

 How can our DP/DTW algorithm find a sub-optimal path!?
 Because of pruning: it eliminates paths from consideration  Because of pruning: it eliminates paths from consideration 

based on local information (the pruning threshold)
 Let W be the best cost word for some utterance, and W’ the 

recognized word (with pruning)recognized word (with pruning)
 In a full search, the path cost for W is better than for W’
 But if W is not recognized when pruning is enabled, then we 

have a pruning error or search error
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Measuring Search ErrorsMeasuring Search Errors
 How much of recognition errors is caused by search errors?
 We can estimate this from a sample test data, for which the 

correct answer is known  as follows:correct answer is known, as follows:
 For each utterance j in the test set, run recognition using 

pruning and note the best cost Cj’ obtained for the result
 For each utterance j  also match the correct word to the input  For each utterance j, also match the correct word to the input 

without pruning, and note its cost Cj

 If Cj is better than Cj’ we have a pruning error or search error for 
utterance j

 Pruning errors can be reduced by lowering the pruning 
threshold (i.e. making it less aggressive)

 Note, however, this does not guarantee that the correct word , , g
is recognized!
 The new pruning threshold may uncover other incorrect paths 

that perform better than the correct one
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Summary So FarSummary So Far
 Dynamic programming for finding minimum cost paths
 Trellis as realization of DP, capturing the search dynamics

 Essential components of trellis Essential components of trellis
 DP applied to string matching
 Adaptation of DP to template matching of speech

 Dynamic Time Warping, to deal with varying rates of speech
 Isolated word speech recognition based on template matching
 Time synchronous search
 Isolated word recognition using automatic endpointing
 Dealing with errors using confidence estimation and N-best 

lists
 Improving recognition accuracy through multiple templates
 Beam search and beam pruning
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A Footnote: Reversing Sense of “Cost”A Footnote: Reversing Sense of “Cost”
 So far, we have a cost measure in DP and DTW, where higher 

values imply worse match
 We will also frequently use the opposite kind  where higher  We will also frequently use the opposite kind, where higher 

values imply a better match; e.g.:
 The same cost function but with the sign changed (i.e. negative 

Euclidean distance (= √(x y )2; X and Y being vectors)Euclidean distance (= –√(xi – yi)2; X and Y being vectors)

 –(xi – yi)2; i.e. –ve Euclidean distance squared

 We may often use the generic term score to refer to such 
values
 Higher scores imply better match, not surprisingly
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DTW Using ScoresDTW Using Scores
 How should DTW be changed when using scores vs costs?
 At least three points to consider:

 Obviously  we need to maximize the total path score  rather  Obviously, we need to maximize the total path score, rather 
than minimize it

 Beam search has to be adjusted as follows: if the best partial 
path score achieved in a frame is X, prune away all nodes with path score achieved in a frame is X, prune away all nodes with 
partial path score < X–T (instead of > X+T, where T is the beam 
pruning threshold)

 Likewise, in confidence estimation, we accept paths with scores 
above the confidence threshold, in contrast to cost values below 
the threshold
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Likelihood Functions for ScoresLikelihood Functions for Scores
 Another common method is to use a probabilistic function, for 

the local node or edge “costs” in the trellis
 Edges have transition probabilities Edges have transition probabilities
 Nodes have output or observation probabilities

 They provide the probability of the observed input
 Again, the goal is to find the template with highest probability of  Again, the goal is to find the template with highest probability of 

matching the input

 Probability values as “costs” are also called likelihoodsy
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Gaussian Distribution as Likelihood FunctionGaussian Distribution as Likelihood Function

 If x is an input feature vector and  is a template vector of 
dimensionality N, the function:

is the famous multivariate Gaussian distribution, where is 
the co-variance matrix of the distribution

 It is one of the most commonly used probability distribution 
functions for acoustic models in speech recognition

 We will look at this in more detail in the next chapter
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DTW Using Probabilistic ValuesDTW Using Probabilistic Values
 As with scores (negative-cost) we need to maximize the total 

path likelihood, since higher likelihoods => better match
 However  the total likelihood for a path is the product of the  However, the total likelihood for a path is the product of the 

local node and edge likelihoods, rather than the sum
 One multiplies the individual probabilities to obtain a joint 

probability valueprobability value

 As a result, beam pruning has to be modified as follows:
 if the best partial path likelihood in a frame is X  prune away all  if the best partial path likelihood in a frame is X, prune away all 

nodes with partial path likelihood < XT (where T is the beam 
pruning threshold)

 Obviously, T < 1y,
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Log LikelihoodsLog Likelihoods
 Sometimes, it is easier to use the logarithm of the likelihood 

function for scores, rather than likelihood function itself
 Such scores are usually called log-likelihood values Such scores are usually called log-likelihood values

 Using log-likelihoods, multiplication of likelihoods turns into 
addition of log-likelihoods, and exponentiation is eliminated

 Many speech recognizers operate in log-likelihood mode
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Some Fun Exercises with LikelihoodsSome Fun Exercises with Likelihoods
 How should the DTW algorithm be modified if we use log-

likelihood values instead of likelihoods?

 Application of technique known as scaling:
 When using cost or score (-ve cost) functions, show that adding 

some arbitrary constant value to all the partial path scores in some arbitrary constant value to all the partial path scores in 
any given frame does not change the outcome
 The constant can be different for different input frames

 When using likelihoods, show that multiplying partial path values g , p y g p p
by some positive constant does not change the outcome

 If the likelihood function is the multivariate Gaussian with 
identity covariance matrix (i.e. the term disappears), show 
that using the log-likelihood function is equivalent to using 
the Euclidean distance squared cost function
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