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English or German?English or German?
The European Commission has just announced that English, and not 

German, will be the official language of the European Union.

But, as part of the negotiations, the British Government conceded that 
English spelling had some room for improvement and has accepted 
a 5- year phase-in plan that would become known as "Euro-
E li h"English".
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English or German?English or German?
In the first year, "s" will replace the soft "c".  Sertainly, this will make 

the sivil servants jump with joy.

The hard "c" will be dropped in favour of "k".  This should klear up 
konfusion, and keyboards kan have one less letter.

There will be growing publik enthusiasm in the sekond year when the 
troublesome "ph" will be replaced with "f".  This will make words like 
fotograf 20% shorter.

In the 3rd year, publik akseptanse of the new spelling kan be expekted 
to reach the stage where more komplikated changes are possible.

Governments will enkourage the removal of double letters which have 
always ben a deterent to akurate speling.
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English or German?English or German?
Also, al wil agre that the horibl mes of the silent "e" in the languag is 

disgrasful and it should go away.

By the 4th yer people wil be reseptiv to steps such as replasing "th" with 
"z" and "w"with "v".

During ze fifz yer, ze unesesary "o" kan be dropd from vords kontaining 
"ou" and after ziz fifz yer, ve vil hav a reil sensi bl riten styl.

Zer vil be no mor trubl or difikultis and evrivun vil find it ezi tu 
understand ech oza.  Ze drem of a united urop vil finali kum tru.

Und efter ze fifz yer, ve vil al be speking German like zey vunted in ze 
fo t pl !
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Why is Garbled Text Recgonizable?Why is Garbled Text Recgonizable?
E.g.:

Also, al wil agre that the horibl mes of the silent "e" in the languag 
is disgrasful and it should go away.g g y

 Why do we think horibl should be horrible and not broccoli or 
quixotic?

 May sound like a silly question, but one of the keys to speech 
recognition
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Why is Garbled Text Recgonizable?Why is Garbled Text Recgonizable?
 Possible reasons:

 Words “look” recognizable, barring spelling errors
 E g  publik E.g. publik

 Words “sound” recognizable when sounded out
 E.g. urop

 Context provides additional cluesContext provides additional clues
 E.g. oza in “ … each oza.”

 Of these  which is the most rudimentary?  Most complex? Of these, which is the most rudimentary?  Most complex?

25 Jan 2010 6



How to Automate German How to Automate German --> English?> English?
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How to Automate German How to Automate German --> English?> English?
 Start with simple problem:

 Treat each word in isolation
 Handle spelling errors only (surface feature) Handle spelling errors only (surface feature)

 In other words:
I  “ di  lik ” d “ t t” t Ignore “sounding like” and “context” aspects
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How to Automate German How to Automate German --> English?> English?
Input word

Word1

Word2

compare

compare

Word3 compare Best

Word-N compare

 Only unknown: The compare box
 Exactly what is the comparison algorithm?

Dictionary
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Relation to Speech Recognition?Relation to Speech Recognition?
Spoken input word

Word1

Word2

compare

compare

Word3 compare Best

Word-N compare

 Isolated word recognition scenario

Recordings (templates)
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Problems in Comparing Speech?Problems in Comparing Speech?
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Problems in Comparing Speech?Problems in Comparing Speech?
 No two spoken versions identical

 Individual’s unique voice
 Gender Gender

 Speaking rate
 Speaking style
 Accent Accent
 Background condition
 And so on…

 So  looking for an exact match won’t work So, looking for an exact match won t work

 Fi t  l  t t t i  i  bl First, solve text string comparison problem
 Then, apply it to speech
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String ComparisonString Comparison
 If the only spelling mistakes involve substitution errors, 

comparison is easy:
 Line up the words  letter-for-letter  and count the number of  Line up the words, letter for letter, and count the number of 

corresponding letters that differ:

P  U  B  L  I  KU
P  U  B  L  I  C

P  U  B  L  I  KP  U  B  L  I  K
P  E  O  P  L  E

 But what about words like agre (agree)?  How do we “line up” 
the letters?
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String ComparisonString Comparison
 In general, we consider three types of string errors:

 Substitution: a template letter has been changed in the input
 Insertion: a spurious letter is introduced in the input Insertion: a spurious letter is introduced in the input
 Deletion: a template letter is missing from the input

 Th    k   diti  ti These errors are known as editing operations

P  U  B  L  I  K
P  U  B  L  I  CP  U  B  L  I  C

A  G  R      E
GA  G  R  E E

P  O  T  A  T  O  E
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String ComparisonString Comparison
 Why did we pick the above alignments?  Why not some 

other alignment of the letters:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E
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String ComparisonString Comparison
 Why did we pick the above alignments?  Why not some 

other alignment:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E

 Because these alignments exhibit a greater edit distance 
than the “correct” alignment
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String Comparison ProblemString Comparison Problem
 Given two arbitrary strings, find the minimum edit distance

between the two:
 Edit distance = the minimum number of editing operations Edit distance = the minimum number of editing operations

needed to convert one into the other
 Editing operations: substitutions, insertions, deletions
 Often, the distance is also called costO te , t e d sta ce s a so ca ed cost

 This minimum distance is a measure of the dissimilarity
between the two strings

 Also called the Levenshtein distance

 Remember there is always Wikipedia to learn more!

25 Jan 2010 17



String Comparison ProblemString Comparison Problem
 How do we compute this minimum edit distance?
 With words like agre and publik, we could eyeball and 

“guess” the correct alignmentguess  the correct alignment

 Such words are familiar to us
 But we cannot “eyeball and guess” with unfamiliar words

 Corollary: ALL words are unfamiliar to computers!
 We need an algorithm
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String Comparison ExampleString Comparison Example
 Hypothetical example of unfamiliar word:

 Template: ABBAAACBADDA
 Input: CBBBACCCBDDDDA Input: CBBBACCCBDDDDA

DB B A C B DA Atemplate

i t

A A A

DDC CB

B

B

A C B D DC Ainput

insertions

deletionssubstitution

 Other alignments are possible
 Which is the “correct” (minimum distance) alignment?
 N d  l ith  t  t  thi !
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String Edit Distance ComputationString Edit Distance Computation
 Measuring edit distance is best visualized as a 2-D diagram of the 

template being aligned or warped to best match the input
 Two possible alignments of template to input are shown, in blue and red

A
A B C D E F G input

B
C
X
Y

= Correct or substituted
= Input character inserted

The arrow directions have specific meaning:

Y
Z

t l t

= Template character deleted

A  B  C  X  Y  Z Distance = 4}template A  B  C  D  E  F  G

A  B      C      X  Y  Z
A  B  C  D  E  F      G

Distance = 4

Distance = 5

}
}
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Minimum String Edit DistanceMinimum String Edit Distance
 This is an example of a search problem, since we need to 

search among all possible paths for the best one

 First possibility: Brute force search
 Exhaustive search through all possible paths from top-left to 

bottom-right,  and choose path with minimum costbotto g t, a d c oose pat t u cost
 But, computationally intractable; exponentially many paths!

 (Exercise: Exactly how many different paths are there?)
 (A path is a connected sequence made up of the three types of ( p q p yp

arrows: diagonal, vertical and horizontal steps)

 Solution: Dynamic Programming (DP)
 Find optimal (minimum cost) path by utilizing (re-using) optimal 

sub-paths
 Central to virtually all major speech recognition systems
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Minimum String Edit Distance: DPMinimum String Edit Distance: DP
 Central idea: formulate optimal path to any intermediate point X in 

the matrix in terms of optimal paths of all its immediate predecessors
 Let MX = Min. path cost from origin to any pt. X in matrix
 Say, A, B and C are all the predecessors of X
 Assume MA, MB and MC are known (shown by dotted lines)

 Then, MX = min (MA+AX, MB+BX, MC+CX)
 AX = edit distance for diagonal transition

= 0 if the aligned letters are same, 1 if not)
 BX = edit distance for vertical transition

BA

C
= 1 (deletion)

 CX = edit distance for horizontal transition
= 1 (insertion)

X
C
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Minimum String Edit Distance: DPMinimum String Edit Distance: DP
 Hence, start from the origin, and compute min. path cost for every 

matrix entry, proceeding from top-left to bottom right corner

 Proceed methodically, once column (i.e. one input character) at a 
time:
 Consider each input character, one at a time
 Fill out min. edit distance for that entire column before moving on to 

next input character
 Forces us to examine every unit of input (in this case, every character) 

one at a time
 Allows each input character to be processed as it becomes available 

(“online” operation possible)

 Mi  dit di t   l  t b tt  i ht  Min. edit distance = value at bottom right corner
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DP ExampleDP Example
 First, initialize top left corner, aligning the first letters

A
A B C D E F G
0 A

A B C D E F G
0A

B
C
X

0 A
B
C
X

0
1

2

3

Y
Z

Y
Z

4
5

A B C D E F G A B C D E F G
A
B
C

A B C D E F G
0 1
1 0

2 1

A
B
C

A B C D E F G
0 1 2
1 0 1

2 1 0C
X
Y
Z

2 1

3 2

4 3
5 4

C
X
Y
Z

2 1 0

3 2 1

4 3 2
5 4 3
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DP Example (contd.)DP Example (contd.)

A
B

A B C D E F G
0 1 2 3
1 0 1 2

A
B

A B C D E F G
0 1 2 3 4
1 0 1 2 3

C
X
Y

2 1 0 1

3 2 1 1

4 3 2 2

C
X
Y

2 1 0 1 2

3 2 1 1 2

4 3 2 2 2

Z 5 4 3 3 Z 5 4 3 3 3

A
A B C D E F G
0 1 2 3 4 5 6A

A B C D E F G
0 1 2 3 4 5

B
C
X

1 0 1 2 3 4 5

2 1 0 1 2 3 4

3 2 1 1 2 2 3

B
C
X

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 1 2 2

 Min. edit distance (ABCXYZ, ABCDEFG) = 4

Y
Z

4 3 2 2 2 3 3
5 4 3 3 3 3 4

Y
Z

4 3 2 2 2 3
5 4 3 3 3 3
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A Little Diversion: Algorithm BugA Little Diversion: Algorithm Bug
 The above description and example has a small bug.  What is 

it?
 Hint: Consider input and template: urop and europe Hint: Consider input and template: urop and europe

 What is their correct minimum edit distance?  (Eyeball and 
guess!)

 What does the above algorithm produce? What does the above algorithm produce?

 Exercise: How can the algorithm be modified to fix the bug?
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DP: Finding the Best AlignmentDP: Finding the Best Alignment
 The algorithm so far only finds the cost, not the alignment itself 
 How do we find the actual path that minimizes edit distance?

 There may be multiple such paths, any one path will suffice

 To determine the alignment, we modify the algorithm as follows
 Whenever a cell X is filled in, we maintain a back-pointer from X to 

it  d  ll th t l d t  th  b t  f  Xits predecessor cell that led to the best score for X
 Recall MX = min (MA+AX, MB+BX, MC+CX)
 So, if MB+BX happens to be the minimum

we create a back-pointer X->B

Back-pointer

we create a back pointer X >B
 If there are ties, break them arbitrarily

 Thus, every cell has a single back-pointer X

BA

C

 At the end, we trace back from the final cell to the origin, using the 
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Finding the Best Alignment: ExampleFinding the Best Alignment: Example
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DP TrellisDP Trellis
 The 2-D matrix, with all possible transitions filled in, is called the 

search trellis
 Horizontal axis: time.  Each step deals with the next input unit (in this 

case, a text character)
 Vertical axis: Template (or model)

 Search trellis for the previous example:

A B C D E F G
A

B

Change of notation: 
nodes = matrix cellsB

C

XX

Y

Z
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DP TrellisDP Trellis
 DP does not require that transitions be limited to the three types 

used in the example
 The primary requirement is that the optimal path be computable p y q p p p

recursively, based on a node’s predecessors’ optimal sub-paths

25 Jan 2010 30



DP Trellis (contd.)DP Trellis (contd.)
 The search trellis is arguably one of the most crucial concepts 

in modern day speech recognizers!
 We will encounter this again and again We will encounter this again and again

 Just about any decoding problem is usually cast in terms of 
such a trellissuch a trellis

 It is then a matter of searching through the trellis for the best 
pathpath
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Computational Complexity of DPComputational Complexity of DP
 Computational cost ~

No. of  nodes  x  No. of edges entering each node
 For string matching  this is: For string matching, this is:

String-length(template)  x  String-length(input)  x  3
 (Compare to exponential cost of brute force search!)

 Memory cost for string matching?
 No of nodes (String-length(template)  x  String-length(input))?
 Actually  we don’t need to store the entire trellis if all we want is  Actually, we don’t need to store the entire trellis if all we want is 

the min. edit distance (i.e. not the alignment; no back pointers)
 Since each column depends only on the previous, we only need 

storage for 2 columns of the matrixstorage for 2 columns of the matrix
 The current column being computed and the previous column

 Actually, in most cases a column can be updated in-place
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Back to German Back to German --> English> English
Input word

Edit distances

Word1

Word2

DP    

DP    

Word3 DP    Best

Word-N DP    

 Compare box = DP computation of minimum edit distance
 A separate DP trellis for each dictionary word (?)

Dictionary
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Optimization: Trellis SharingOptimization: Trellis Sharing
 Consider templates horrible, horrid, horde being matched 

with input word horibl

H O R I B

H

L

O

H O R I B

H

L

O

H O R I B

H

L

O
R
R
I
B

R
R
I
D

R
D
E

B
L
E

D

 Trellises shown above
 Colors indicate identical contents of trellis

 H    id thi  d li ti  f t ti ?
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Optimization: Trellis SharingOptimization: Trellis Sharing
 Compute only the unique subsets (sub-trellises)
 Allow multiple successors from a given sub-trellis

H O R I B

H

L

O

H O R I B

H

L

O

H O R I B

H

L

O
R

R
I

R
R
I
B

R
R
I
D

B
L
E

B
L
E

D

H O R I B

H

L

D
E

DO
R
D
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Trellis Sharing => Template SharingTrellis Sharing => Template Sharing
 Notice that templates have become fragmented!
 Derive new template network to facilitate trellis sharing:

H O R I B

H

L

O B   L   E horrible

H   O   R

R

R
I

R   I

D h id

D   E

H   O   R
B
L
E

D horrid

horde

D
E

D
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Template Sharing Template Sharing --> Lexical Trees> Lexical Trees
 Take it one step further

 Break down individual blocks:
B   L   E horrible

H   O   R

R   I

D horrid

D   E horde

 We get: Lexical tree model:

IR

LB E
horrible

OH R D horrid
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Building Lexical TreesBuilding Lexical Trees
 Original templates were linear or flat models:

OH R IR B L E

OH R IR D

 Exercise: How can we convert this collection to a lexical tree?

OH R ED

 Exercise: How can we convert this collection to a lexical tree?
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Trellises for Lexical TreesTrellises for Lexical Trees
 We saw that it is desirable to share sub-trellises, to reduce 

computation
 We saw the connection between trellis sharing and  We saw the connection between trellis sharing and 

structuring the templates as lexical trees
 You now (hopefully!) know how to construct lexical trees

 Q: Given a lexical tree representing a group of words, what 
does its search trellis look like?

 A: 
 Horizontal axis: time (input characters), as before
 Vertical axis: nodes in the model (lexical tree nodes)
 Trellis transitions: nothing but the transitions in the lexical tree, 

unrolled over time
 We are stepping the model one input unit at a time, and looking at 

its state at each step

25 Jan 2010 39

its state at each step



Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

S

H
insertion

K
deletion
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Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

i+2

S

H
insertion

K
deletion
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Trellises for Lexical Trees: ExampleTrellises for Lexical Trees: Example
 Simple example of templates: at, ash, ask

 Lextree:
S

H

 Trellis:

A
S

T
K

 Trellis:

A
i i+1 input

substitution/match

i+2 i+3

S

H
insertion

ash

K
deletionask

Leaf nodes
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Search Trellis for Graphical ModelsSearch Trellis for Graphical Models
 The scheme for constructing trellises from lextree models applies to 

any graphical model

 Note that the simple trellis of slide 29 follows directly from this 
scheme, where the model is a degenerate, linear structure:

A B C D E F G
A

B

C

X

Y

Z
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Summary: Elements of the Search TrellisSummary: Elements of the Search Trellis
 Nodes represent the cells of the DP matrix
 Edges are the allowed transitions according to some model of the 

problemp
 In string matching we allow substitutions, insertions, and deletions

 Every edge optionally has an edge cost for taking that edge
 Every node optionally has a local node cost for aligning the y p y g g

particular input entry to the particular template entry
 The node and edge costs used depend on the application and model

 Th  DP l ith  t  d  i t i   th t f  th  b t  The DP algorithm, at every node, maintains a path cost for the best 
path from the origin to that node
 In string matching, this cost is the substring minimum edit distance
 Path costs are computed by accumulating local node and edge costs  Path costs are computed by accumulating local node and edge costs 

according to the recursive formulation already seen (minimizing cost)

 One may also use a similarity measure, instead of dissimilarity
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Edge and Node Costs for String MatchEdge and Node Costs for String Match
 Edge costs:

x x

1 1 0 1

x y

insertion deletion correct substitution

 Local node costs: None
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Reducing Search Cost: PruningReducing Search Cost: Pruning
 Reducing search cost implies reducing the size of the lattice that has 

to be evaluated

 There are several ways to accomplish this
 Reducing the complexity and size of the models (templates)

 E.g. using lextrees (and thereby sharing trellis computation)
 We have already seen this above We have already seen this above

 Eliminating parts of the lattice from consideration altogether
 This approach is called search pruning, or just pruning

 Basic consideration in pruning: As long as the best cost path is not 
eliminated by pruning, we obtain the same result
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PruningPruning
 Pruning is a heuristic: typically, there is a threshold on some 

measured quantity, and anything above or below the threshold is 
eliminated

 It is all about choosing the right measure, and the right threshold

 Let us see two different pruning methods:
 Based on deviation from the diagonal path in the trellis
 Based on path costs
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Pruning by Limiting Search PathsPruning by Limiting Search Paths
 Assume that the the input and the best matching template do not 

differ significantly from each other
 The best path matching the two will lie close to the “diagonal”

 Thus, we need not search far off the diagonal.  If the search-space 
“width” is kept constant, cost of search is linear in utterance length 
instead of quadratic

eliminated

search 
region

Trellis

eliminated
width
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Pruning by Limiting Search PathsPruning by Limiting Search Paths
 What are problems with this approach?
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Pruning by Limiting Search PathsPruning by Limiting Search Paths
 What are problems with this approach?

 With lexical tree models, the notion of “diagonal” becomes 
difficultdifficult
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Option 2: Pruning by Limiting Path CostOption 2: Pruning by Limiting Path Cost
 Observation: Partial paths that have “very high” costs will rarely 

recover to win
 Hence, poor partial paths can be eliminated from the search:, p p p

 For each frame j, after computing all the trellis nodes path costs, 
determine which nodes have too high costs

 Eliminate them from further exploration
 Q  H  d   d fi  “hi h ”? Q: How do we define “high cost”?

jorigin
High cost partial paths (red);

D   l  f hDo not explore further

partial 
best paths
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
 Problem: Absolute path cost increases monotonically with input 

length!length!
 Thresholds have to be loose enough to allow for the longest inputs
 But such thresholds will be too permissive at shorter lengths, and 

not constrain computation effectively

 How can we overcome this?
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 One could define high path cost as a value worse than some 

fixed threshold

 Will this work?
 Problem: Absolute path cost increases monotonically with input 

length!length!
 Thresholds have to be loose enough to allow for the longest inputs
 But such thresholds will be too permissive at shorter lengths, and 

not constrain computation effectively

 How can we overcome this?
 Solution: Look at relative path cost instead of absolute path costp p
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Pruning: Beam SearchPruning: Beam Search
 Solution: At each time step j, set the pruning threshold by a 

fixed amount T relative to the best cost at that time
 I e  if the best partial path cost achieved at time t is X  prune  I.e. if the best partial path cost achieved at time t is X, prune 

away all nodes with partial path cost > X+T before moving to 
time t+1

 Advantages:
 Unreliability of absolute path costs is eliminated
 Monotonic growth of path costs with time is also irrelevant Monotonic growth of path costs with time is also irrelevant

 Search that uses such pruning is called beam search
 This is the most widely used search optimization strategy This is the most widely used search optimization strategy

 The relative threshold T is usually called beam width or just 
beam

25 Jan 2010 55



Determining the Optimal Beam WidthDetermining the Optimal Beam Width
 Determining the optimal beam width to use is crucial

 Using too narrow or tight a beam (too low T) can prune the best 
path and result in too high a match cost, and errorspath and result in too high a match cost, and errors

 Using too large a beam results in unnecessary computation in 
searching unlikely paths

 Unfortunately, there is no mathematical solution to 
determining an optimal beam width

 Common method: Try a wide range of beams on some test  Common method: Try a wide range of beams on some test 
data until the desired operating point is found
 Need to ensure that the test data are somehow representative of 

actual speech that will be encountered by the applicationp y pp
 The operating point may be determined by some combination of 

recognition accuracy and computational efficiency
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ConclusionConclusion
 Minimum string edit distance
 Dynamic programming search to compute minimum edit 

distancedistance
 Lextree construction for compact templates
 Graphical models
 Search trellis construction for given graphical models
 Search pruning

 Application to speech:
 All concepts learned with strings apply to speech recognition!
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FINIS!FINIS!
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Application of DP String MatchingApplication of DP String Matching
 How might google recognize “Ravi Shanker” as a mistyped 

version of “Ravi Shankar”?
 One hypothetical heuristic: One hypothetical heuristic:

 Google maintains a list of highly popular query strings
 These are the templates; “Ravi Shankar” is one of them

 When a user types in a query  it is string-matched to every  When a user types in a query, it is string matched to every 
template, using DP

 If a template matches exactly, there is no spelling error
 If a single template has one overall error (edit distance = 1), If a single template has one overall error (edit distance  1), 

google can ask Did you mean “…”
 Otherwise, do nothing

 Either multiple templates have edit distance = 1, or
 Minimum edit distance > 1

 Here, we see the implicit introduction of a confidence measure
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DTW: DP for Speech Template MatchingDTW: DP for Speech Template Matching
 Back to template matching for speech: dynamic time warping

 Input and templates are sequences of feature vectors instead of 
lettersletters

 Intuitive understanding of why DP-like algorithm might work 
to find a best alignment of a template to the input:to find a best alignment of a template to the input:
 We need to search for a path that finds the following alignment:

template s o me th i ng

input s o me th i ng

 Consider the 2-D matrix of template-input frames of speech
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DTW: DP for Speech Template MatchingDTW: DP for Speech Template Matching
s o me th i ng

Need to find 
something like 
this warped path
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DTW: Adapting Concepts from DPDTW: Adapting Concepts from DP
 Some concepts from string matching need to be adapted to 

this problem
 What are the allowed set of transitions in the search trellis? What are the allowed set of transitions in the search trellis?
 What are the edge and local node costs?

 Once these questions are answered  we can apply essentially  Once these questions are answered, we can apply essentially 
the same DP algorithm to find a minimum cost match (path) 
through the search trellis
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DTW: Determining TransitionsDTW: Determining Transitions
 Recall that transitions are derived from a conceptual model of 

how a template might have to be distorted to match the input

 The main modes of distortion are stretching and shrinking of 
speech segments, owing to different speaking rates
 Of course, we do not know a priori what the distortion looks like Of course, we do not know a priori what the distortion looks like

 Also, since speech signals are continuous valued instead of 
discrete, there is really no notion of insertiondiscrete, there is really no notion of insertion
 Every input frame must be matched to some template frame

 For meaningful comparison of two different path costs, their  For meaningful comparison of two different path costs, their 
lengths must be kept the same
 So, every input frame is to be aligned to a template frame 

exactly once
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DTW: TransitionsDTW: Transitions
 Typical transitions used in DTW for speech:

The next input frame aligns to the same template frame as p g p
the previous one.  (Allows a template segment to be 
arbitrarily stretched to match some input segment)

The next input frame aligns to the next template frame   The next input frame aligns to the next template frame.  
No stretching or shrinking occurs in this region

The next input frame skips the next template frame and The next input frame skips the next template frame and 
aligns to the one after that.  Allows a template segment to 
be shrunk (by at most ½) to match some input segment

 Note that all transitions move one step to the right, ensuring 
that each input frame gets used exactly once along any path
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DTW: Use of Transition TypesDTW: Use of Transition Types

Short template, long input
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DTW: Other Transition ChoicesDTW: Other Transition Choices
 Other transition choices are possible:

 Skipping more than one template frame (greater shrink rate)
 Vertical transitions: the same input frame matches more than  Vertical transitions: the same input frame matches more than 

one template frame
 This is less often used, as it can lead to different path lengths, 

making their costs not easily comparable
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DTW: Local Edge and Node CostsDTW: Local Edge and Node Costs
 Typically, there are no edge costs; any edge can be taken with no 

cost
 Local node costs measure the dissimilarity or distance between the y

respective input and template frames
 Since the frame content is a multi-dimensional feature-vector, what 

dissimilarity measure can we use?
 A simple measure is Euclidean distance; i.e. geometrically how far 

one point is from the other in the multi-dimensional vector space
 For two vectors X = (x1, x2, x3 … xN), and Y = (y1, y2, y3… yN), the 

Euclidean distance between them is:Euclidean distance between them is:

√xi-yi)2, i = 1 .. N

 Thus, if X and Y are the same point, the Euclidean distance = 0
 The farther apart X and Y are, the greater the distance
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DTW: Local Edge and Node CostsDTW: Local Edge and Node Costs
 Other distance measure could also be used:

 Manhattan metric or the L1 norm:  |Ai – Bi|

 Weighted Minkowski norms: (wi|Ai – Bi|n)1/n
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DTW: Overall algorithmDTW: Overall algorithm
 The transition structure and local edge and node costs are 

now defined
 The search trellis can be realized and the DP algorithm  The search trellis can be realized and the DP algorithm 

applied to search for the minimum cost path, as before
 Example trellis using the transition types shown earlier:

t=0 1 2 3 4 5 6 7 8 9 10 11

25 Jan 2010 69

t=0 1 2 3 4 5 6 7 8 9 10 11



DTW: Overall Algorithm (contd.)DTW: Overall Algorithm (contd.)
 Let Pi,j = the best path cost from origin to node [i,j]

(i.e., where i-th template frame aligns with j-th input frame)
 Let Ci,j = the local node cost of aligning template frame i toi,j g g p

input frame j (Euclidean distance between the two vectors)
 Then, by the DP formulation:

P  min (P + C   P + C   P + C )Pi,j = min (Pi,j-1 + Ci,j,  Pi-1,j-1 + Ci,j,  Pi-2,j-1 + Ci,j)
= min (Pi,j-1,  Pi-1,j-1,  Pi-2,j-1) + Ci,j

 Remember edge costs are 0, otherwise they should be added to the g , y
costs

 If the template is m frames long and the input is n frames long, the 
best alignment of the two has the cost =  Pbest alignment of the two has the cost   Pm,n

 Note: Any path leading to an internal node (i.e. not m,n) is called a 
partial path
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DTW: Computational CostDTW: Computational Cost
 As with DP, the computational cost for the above DTW is 

proportional to:
M x N x 3  whereM x N x 3, where
M = No. of frames in the template
N = No. of frames in the input
3 is the number of incoming edges per node
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Handling Surrounding SilenceHandling Surrounding Silence
 The DTW algorithm automatically handles any silence region 

surrounding the actual speech, within limits:

silence

speech

 But  the transition structure does not allow a region of the  But, the transition structure does not allow a region of the 
template to be shrunk by more than ½ !
 Need to ensure silences included in recording are of generally 

consistent lengths, or allow other transitions to handle a greater 

25 Jan 2010 72

co s ste t e gt s, o a o ot e t a s t o s to a d e a g eate
“warp”



Isolated Word Recognition Using DTWIsolated Word Recognition Using DTW
 We now have a method for measuring the best match of a 

template to the input speech

 How can we apply this to perform isolated word recognition?
 For each word in the vocabulary, pre-record a spoken example 

(its template)( ts te p ate)
 For a given input utterance, measure its minimum distance to 

each template using DTW
 Choose the template that delivers the smallest distance

 As easy as that!
 Could implement this on a cell phone for dialingp p g

 Is there an efficient way to do this?
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Time Synchronous SearchTime Synchronous Search
 Since input frames are processed 

sequentially, the input speech can be 
matched to all templates simultaneously 1

Input

 The figure shows three such matches going 
on in parallel

 Essentially, every template match is 
t t d i lt l  d t d 

Te
m

pl
at

e1

started simultaneously and stepped 
through the input in lock-step fashion
 Hence the term time synchronous

 Advantages Te
m

pl
at

e2

 Advantages
 No need to store the entire input for 

matching with successive templates
 Matching can proceed as the input comes in e3

 Enables pruning for computational efficiency 
(as we will see later)

 Other advantages in continuous speech 
recognition (will be seen later)

Te
m
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e
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Example: Isolated Speech Based DictationExample: Isolated Speech Based Dictation

 We could, in principle, almost build a large vocabulary 
dictation application using the techniques learned so far
 Each word is spoken in isolation  i e silence after every word Each word is spoken in isolation, i.e. silence after every word
 Need a template for every word in vocabulary
 Accuracy would probably be terrible

 Many words have very similar acoustics in a large vocabulary system  Many words have very similar acoustics in a large vocabulary system 
e.g. STAR/SCAR, MEAN/NEEM, DOOR/BORE

 We need additional techniques for improving accuracy (later)
 But, in principle, one can be built, except…

 How does such an application know when a word is spoken?
 Explicit “click-to-speak”, “click-to-stop” button clicks from user, 

f   d?for every word?
 Obviously extremely tedious

 Need a speech/silence detector!
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SpeechSpeech--Silence Detection: EndpointerSilence Detection: Endpointer

sil this    sil is        sil isolated    sil word   sil speech  sil
silence segments

 Without explicit signals from the user, can the system 
automatically detect pauses between words, and segment the 

h l d d

silence segments

speech stream into isolated words?
 Such a speech/silence detector is called an endpointer

 Detects speech/silence boundaries (shown by dotted lines)
 Words can be isolated by choosing speech segments between 

midpoints of successive silence segments
 Most speech applications use such an endpointer to relieve 
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A Simple Endpointing SchemeA Simple Endpointing Scheme
 Based on silence segments having low signal amplitude

 Usually called energy-based endpointing

 The raw audio samples stream is processed as a short sequence of 
frames (as for feature extraction)

 The signal energy in each frame is computed
 Typically in decibels (dB):  10 log (xi2), where xi are the sample values 

in the frame
 A pre-defined threshold is used to classify each frame as speech or 

silencesilence
 The labels are smoothed to eliminate spurious labels due to noise

 E.g. minimum silence and speech segment length limits may be imposed
 A very short speech segment buried inside silence may be treated as y p g y

silence

 This scheme works reasonably well under quiet background 
conditions
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Isolated Speech Based Dictation (Again)Isolated Speech Based Dictation (Again)
 With such an endpointer, we have all the tools to build a 

complete, isolated word recognition based dictation system, 
or any other applicationor any other application

 However, as mentioned earlier, accuracy is a primary issue 
when going beyond simple  small vocabulary situationswhen going beyond simple, small vocabulary situations
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Dealing with Recognition ErrorsDealing with Recognition Errors
 Applications can use several approaches to deal with speech 

recognition errors
 Primary method: improve performance by using better  Primary method: improve performance by using better 

models in place of simple templates
 We will consider this later

 However  in addition to basic recognition  most systems also  However, in addition to basic recognition, most systems also 
provide other, orthogonal mechanisms for applications to deal
with errors
 Confidence estimation Confidence estimation
 Alternative hypotheses generation (N-best lists)

 We now consider these two mechanisms, briefly
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Confidence ScoringConfidence Scoring
 Observation: DP or DTW will always deliver a minimum cost 

path, even if it makes no sense
 Consider string matching: Consider string matching:

Yesterday
templates

input 7
min. edit distance

Today

Tomorrow

January
input

5

7

 The template with minimum edit distance will be chosen, 
even though it is “obviously” incorrecteven though it is obviously  incorrect
 How can the application discover that it is “obviously” wrong?

 Confidence scoring is the problem of determining how 
confident one can be that the recognition is “correct”
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Confidence Scoring for Confidence Scoring for String MatchString Match
 A simple confidence scoring scheme: Accept the matched 

template string only if the cost <= some threshold
 We encountered its use in the hypothetical google search string  We encountered its use in the hypothetical google search string 

example!

 This treats all template strings equally, regardless of lengthp g q y, g g
 Or: Accept if cost <= 1 + some fraction (e.g. 0.1) of 

template string length
 Templates of 1-9 characters tolerate 1 error Templates of 1 9 characters tolerate 1 error
 Templates of 10-19 characters tolerate 2 errors, etc.

 Easy to think of other possibilities, depending on the 
applicationapplication

 Confidence scoring is one of the more application-dependent 
functions in speech recognition
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Confidence Scoring for DTWConfidence Scoring for DTW
 Can we use similar thresholding technique for template 

matching using DTW?
 Unlike in string matching  the cost measures are not  Unlike in string matching, the cost measures are not 

immediately, meaningfully “accessible” values
 Need to know range of minimum cost when correctly matched 

and when incorrectly matched
 If the ranges do not overlap, one could pick a threshold

Overlap region susceptible 
to classification errors

threshold

to classification errors

cost

Distribution of DTW 
costs of correctly 
identified templates

Distribution for 
incorrectly identified 
templates
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Confidence Scoring for DTWConfidence Scoring for DTW
 As with string matching, the DTW cost may have to be 

normalized
 Use DTW cost / frame of input speech  instead of total DTW  Use DTW cost / frame of input speech, instead of total DTW 

cost, before determining threshold
 Cost distributions and threshold have to be determined 

empirically, based on a sufficient collection of test dataempirically, based on a sufficient collection of test data

 Unfortunately  confidence scores based on such distance  Unfortunately, confidence scores based on such distance 
measures are not very reliable
 Too great an overlap between distribution of scores for correct 

and incorrect templatesand incorrect templates
 We will see other, more reliable methods later on
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NN--best List Generationbest List Generation
 Example: Powerpoint catches spelling errors and offers 

several alternatives as possible corrections
 Example: In the isolated word dictation system  Dragon  Example: In the isolated word dictation system, Dragon 

Dictate, one can select a recognized word and obtain 
alternatives
 Useful if the original recognition was incorrect Useful if the original recognition was incorrect

 Basic idea: identifying not just the best match, but the top so 
many matches; i.e., the N-best listmany matches; i.e., the N best list

 Not hard to guess how this might be done, either for string 
matching or isolated word DTW!matching or isolated word DTW!
 (How?)
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Improving Accuracy: Multiple TemplatesImproving Accuracy: Multiple Templates
 Problems with using a single exemplar as a template

 New instances of a word can differ significantly from it
 Makes template matching highly brittle Makes template matching highly brittle
 Works only with small vocabulary of very distinct words
 Works poorly across different speakers

 What if we use multiple templates for each word to handle at e use u t p e te p ates o eac o d to a d e
the variations?
 Preferably collected from several speakers

 Template matching algorithm is easily modified Template matching algorithm is easily modified
 Simply match against all available templates and pick the best

 However  computational cost of matching increases linearly  However, computational cost of matching increases linearly 
with the number of available templates
 Remember matching each template cost ~ (Template length x 

Input length x 3)
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Reducing Search Cost: PruningReducing Search Cost: Pruning
 Reducing search cost implies reducing the size of the lattice that has 

to be evaluated

 There are several ways to accomplish this
 Reducing the complexity and size of the models (templates)

 E.g. replacing the multiple templates for a word by a single, average one
Eli i i   f h  l i  f  id i  l h Eliminating parts of the lattice from consideration altogether
 This approach is called search pruning, or just pruning

 We consider pruning first

 Basic consideration in pruning: As long as the best cost path is not 
eliminated by pruning, we obtain the same result
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PruningPruning
 Pruning is a heuristic: typically, there is a threshold on some 

measured quantity, and anything above or below is eliminated

 It is all about choosing the right measure, and the right threshold

 Let us see two different pruning methods:p g
 Based on deviation from the diagonal path in the trellis
 Based on path costs

25 Jan 2010 87



Pruning by Limiting Search PathsPruning by Limiting Search Paths
 Assume that the speaking rates between the template and the input 

do not differ significantly
 There is no need to consider lattice nodes far off the diagonalg
 If the search-space “width” is kept constant, cost of search is linear 

in utterance length instead of quadratic
 However, errors occur if the speaking rate assumption is violated

 i.e. if the template needs to be warped more than allowed by the width

eliminated

search 
i

eliminated

lattice
region

eliminated
width
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 Observation: Partial paths that have “very high” costs will rarely 

recover to win
 Hence, poor partial paths can be eliminated from the search:, p p p

 For each frame j, after computing all the trellis nodes path costs, 
determine which nodes have too high costs

 Eliminate them from further exploration
(A ti  I   f  th  b t ti l th h  l  t) (Assumption: In any frame, the best partial path has low cost)

 Q: How do we define “high cost”?
jorigin

High cost partial paths (red);High cost partial paths (red);
Do not explore further

partial 
b t th
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Pruning by Limiting Path CostPruning by Limiting Path Cost
 As with confidence scoring, one could define high path cost as 

a value worse than some fixed threshold
 But  as already noted  absolute costs are unreliable indicators of  But, as already noted, absolute costs are unreliable indicators of 

correctness 
 Moreover, path costs keep increasing monotonically as search 

proceeds
 Recall the path cost equation

Pi,j = min (Pi,j-1,  Pi-1,j-1,  Pi-2,j-1) + Ci,j

 Fixed threshold will not work
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Pruning: Beam SearchPruning: Beam Search
 Solution: In each frame j, set the pruning threshold by a 

fixed amount T relative to the best cost in that frame
 I e  if the best partial path cost achieved in the frame is X   I.e. if the best partial path cost achieved in the frame is X, 

prune away all nodes with partial path cost > X+T
 Note that time synchronous search is very efficient for 

implementing the above

 Advantages:
 Unreliability of absolute path costs is eliminated Unreliability of absolute path costs is eliminated
 Monotonic growth of path costs with time is also irrelevant

 Search that uses such pruning is called beam search Search that uses such pruning is called beam search
 This is the most widely used search optimization strategy

 The relative threshold T is usually called beam width or just 
beam
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Beam Search VisualizationBeam Search Visualization
 The set of lattice nodes actually evaluated is the active set
 Here is a typical “map” of the active region, aka beam (confusingly)

active 
region

 Presumably  the best path lies somewhere in the active region

(beam)
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Beam Search EfficiencyBeam Search Efficiency
 Unlike the fixed width approach, the computation reduction with 

beam search is unpredictable
 The set of active nodes at frames j and k is shown by the black lines

 However, since the active region can follow any warping, it is likely 
to be relatively more efficient than the fixed width approach

j k

ti  active 
region
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Determining the Optimal Beam WidthDetermining the Optimal Beam Width
 Determining the optimal beam width to use is crucial

 Using too narrow or tight a beam (too low T) can prune the best 
path and result in too high a match cost, and errorspath and result in too high a match cost, and errors

 Using too large a beam results in unnecessary computation in 
searching unlikely paths

 One may also wish to set the beam to limit the computation y p
(e.g. for real-time operation), regardless of recognition errors

 Unfortunately, there is no mathematical solution to 
determining an optimal beam width

 Common method: Try a wide range of beams on some test 
data until the desired operating point is found
 Need to ensure that the test data are somehow representative of p

actual speech that will be encountered by the application
 The operating point may be determined by some combination of 

recognition accuracy and computational efficiency
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Determining the Optimal Beam WidthDetermining the Optimal Beam Width

r 
ra

te
W

or
d 

er
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r
W

 Any value around the point marked T is a reasonable beam 
for minimizing word error rate (WER)

Beam widthT

for minimizing word error rate (WER)
 A similar analysis may be performed based on average CPU 

usage (instead of WER)
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Beam Search Applied to RecognitionBeam Search Applied to Recognition
 Thus far, we considered beam search to prune search paths within a 

single template 
 However, its strength really becomes clear in actual recognition (i.e. , g y g (

time synchronous search through all templates simultaneously)
 In each frame, the beam pruning threshold is determined from the 

globally best node in that frame (from all templates)
 P i  i  f d l b ll  b d  thi  th h ld Pruning is performed globally, based on this threshold
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Beam Search Applied to RecognitionBeam Search Applied to Recognition
 The advantage of simultaneous time-

synchronous matching of multiple 
templates:

Input

3

 Beams can be globally applied to all 
templates

 We use the best score of all template 
frames (trellis nodes at that instant) to 

Te
m

pl
at

e3

frames (trellis nodes at that instant) to 
determine the beam at any instant

 Several templates may in fact exit 
early from contention

Te
m
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at

e2

 In the ideal case, the computational 
cost will be independent of the number 
of templates e3p
 All competing templates will exit very 

early
 Ideal cases don’t often occur Te

m
pl

at
e
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Pruning and Dynamic Trellis AllocationPruning and Dynamic Trellis Allocation
 Since any form of pruning eliminates many trellis nodes from 

being expanded, there is no need to keep them in memory
 Trellis nodes and associated data structures can be allocated on  Trellis nodes and associated data structures can be allocated on 

demand (i.e. whenever they become active)
 This of course requires some book-keeping overhead

 May not make a big difference in small vocabulary systems
 But pruning is an essential part of all medium and large 

vocabulary systemsvocabulary systems
 The search trellis structures in 20k word applications take up 

about 10MB with pruning
 Without pruning, it would require perhaps 10 times as much!p g, q p p
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Recognition Errors Due to PruningRecognition Errors Due to Pruning
 Speech recognition invariably contains errors
 Major causes of errors:

 Inadequate or inaccurate models Inadequate or inaccurate models
 Templates may not be representative of all the variabilities in speech

 Search errors
 Even if the models are accurate  search may have failed because it  Even if the models are accurate, search may have failed because it 

found a sub-optimal path

 How can our DP/DTW algorithm find a sub-optimal path!?
 Because of pruning: it eliminates paths from consideration  Because of pruning: it eliminates paths from consideration 

based on local information (the pruning threshold)
 Let W be the best cost word for some utterance, and W’ the 

recognized word (with pruning)recognized word (with pruning)
 In a full search, the path cost for W is better than for W’
 But if W is not recognized when pruning is enabled, then we 

have a pruning error or search error
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Measuring Search ErrorsMeasuring Search Errors
 How much of recognition errors is caused by search errors?
 We can estimate this from a sample test data, for which the 

correct answer is known  as follows:correct answer is known, as follows:
 For each utterance j in the test set, run recognition using 

pruning and note the best cost Cj’ obtained for the result
 For each utterance j  also match the correct word to the input  For each utterance j, also match the correct word to the input 

without pruning, and note its cost Cj

 If Cj is better than Cj’ we have a pruning error or search error for 
utterance j

 Pruning errors can be reduced by lowering the pruning 
threshold (i.e. making it less aggressive)

 Note, however, this does not guarantee that the correct word , , g
is recognized!
 The new pruning threshold may uncover other incorrect paths 

that perform better than the correct one
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Summary So FarSummary So Far
 Dynamic programming for finding minimum cost paths
 Trellis as realization of DP, capturing the search dynamics

 Essential components of trellis Essential components of trellis
 DP applied to string matching
 Adaptation of DP to template matching of speech

 Dynamic Time Warping, to deal with varying rates of speech
 Isolated word speech recognition based on template matching
 Time synchronous search
 Isolated word recognition using automatic endpointing
 Dealing with errors using confidence estimation and N-best 

lists
 Improving recognition accuracy through multiple templates
 Beam search and beam pruning
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A Footnote: Reversing Sense of “Cost”A Footnote: Reversing Sense of “Cost”
 So far, we have a cost measure in DP and DTW, where higher 

values imply worse match
 We will also frequently use the opposite kind  where higher  We will also frequently use the opposite kind, where higher 

values imply a better match; e.g.:
 The same cost function but with the sign changed (i.e. negative 

Euclidean distance (= √(x y )2; X and Y being vectors)Euclidean distance (= –√(xi – yi)2; X and Y being vectors)

 –(xi – yi)2; i.e. –ve Euclidean distance squared

 We may often use the generic term score to refer to such 
values
 Higher scores imply better match, not surprisingly
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DTW Using ScoresDTW Using Scores
 How should DTW be changed when using scores vs costs?
 At least three points to consider:

 Obviously  we need to maximize the total path score  rather  Obviously, we need to maximize the total path score, rather 
than minimize it

 Beam search has to be adjusted as follows: if the best partial 
path score achieved in a frame is X, prune away all nodes with path score achieved in a frame is X, prune away all nodes with 
partial path score < X–T (instead of > X+T, where T is the beam 
pruning threshold)

 Likewise, in confidence estimation, we accept paths with scores 
above the confidence threshold, in contrast to cost values below 
the threshold
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Likelihood Functions for ScoresLikelihood Functions for Scores
 Another common method is to use a probabilistic function, for 

the local node or edge “costs” in the trellis
 Edges have transition probabilities Edges have transition probabilities
 Nodes have output or observation probabilities

 They provide the probability of the observed input
 Again, the goal is to find the template with highest probability of  Again, the goal is to find the template with highest probability of 

matching the input

 Probability values as “costs” are also called likelihoodsy
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Gaussian Distribution as Likelihood FunctionGaussian Distribution as Likelihood Function

 If x is an input feature vector and  is a template vector of 
dimensionality N, the function:

is the famous multivariate Gaussian distribution, where is 
the co-variance matrix of the distribution

 It is one of the most commonly used probability distribution 
functions for acoustic models in speech recognition

 We will look at this in more detail in the next chapter
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DTW Using Probabilistic ValuesDTW Using Probabilistic Values
 As with scores (negative-cost) we need to maximize the total 

path likelihood, since higher likelihoods => better match
 However  the total likelihood for a path is the product of the  However, the total likelihood for a path is the product of the 

local node and edge likelihoods, rather than the sum
 One multiplies the individual probabilities to obtain a joint 

probability valueprobability value

 As a result, beam pruning has to be modified as follows:
 if the best partial path likelihood in a frame is X  prune away all  if the best partial path likelihood in a frame is X, prune away all 

nodes with partial path likelihood < XT (where T is the beam 
pruning threshold)

 Obviously, T < 1y,
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Log LikelihoodsLog Likelihoods
 Sometimes, it is easier to use the logarithm of the likelihood 

function for scores, rather than likelihood function itself
 Such scores are usually called log-likelihood values Such scores are usually called log-likelihood values

 Using log-likelihoods, multiplication of likelihoods turns into 
addition of log-likelihoods, and exponentiation is eliminated

 Many speech recognizers operate in log-likelihood mode
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Some Fun Exercises with LikelihoodsSome Fun Exercises with Likelihoods
 How should the DTW algorithm be modified if we use log-

likelihood values instead of likelihoods?

 Application of technique known as scaling:
 When using cost or score (-ve cost) functions, show that adding 

some arbitrary constant value to all the partial path scores in some arbitrary constant value to all the partial path scores in 
any given frame does not change the outcome
 The constant can be different for different input frames

 When using likelihoods, show that multiplying partial path values g , p y g p p
by some positive constant does not change the outcome

 If the likelihood function is the multivariate Gaussian with 
identity covariance matrix (i.e. the term disappears), show 
that using the log-likelihood function is equivalent to using 
the Euclidean distance squared cost function
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