Welcome

Spring 2010: Design and Implementation of Speech Recognition Systems

Instructors:
Bhiksha Raj
Rita Singh, Mosur Ravishankar
Administrivia

• Short lecture today (only very brief introduction)

• Still resolving logistic issues
 – 3 different numbers
 • 11756 / 18799D / ??
 – Not all students on my lists
 – Not all students receiving all notifications

• Course listings conflict on different webpages
 – CMU: Monday/Wed, GHC
 – LTI: Tue/Thu, GHC
 – ECE: Monday/Wed, HH
Administrivia

• Course website:
 http://asr.cs.cmu.edu/

• TA: Not yet assigned

• Instructor: Bhiksha Raj
 – GHC 6705
 – bhiksha@cs.cmu.edu
 – Phone: 8-9826
 – Office hours: TBD
What will the course be about

• This will be a hands-on course
 – Everyone is expected to code
 • Extensively
 • You may use any programming language
 – C, C++, Java, LISP, Matlab, Python, Ruby..

• The stress will not be on theory
 – It will be on hands-on practice

• We will discuss algorithms and implementation details
Projects

• Teams must present projects
 – Each team gets to present every project
 – Presentations will be brief: 5-10mins

• Grading based entirely on how many “projects” are correctly completed
Format of Course

• Lectures
• A series of projects of exponentially increasing complexity
• Projects are arranged in multiple levels
 – Isolated word recognition
 – Continuous speech recognition
 – Grammar based recognition
 – Ngrams
 – Sub-word units
 – Parameter sharing
 – Approximate decoding strategies
Format of Course

- Students will be grouped into a small number of teams
- Projects must be completed by teams
- Every team is expected to present their work at various stages of each project
 - Code description
 - Algorithmic and implementation details
 - Problems faced, solutions etc.
Projects

• Project 1: Capturing Audio

• Project 2: Feature computation
 – Plug feature computation into audio capture
 – Modify feature computation for buffered audio
 – Visualize various partial results in feature computation
 – Modify various parameters and visualize output

• Project 3: DTW-based recognition of isolated words
 – String matching using DP
 – Generalize string matching to DTW
 – Record templates
 – Create feature-based templates
 – Pattern matching and recognition
Projects

• Project 4: HMM-based recognition of isolated words
 – Viterbi decoding with simple Gaussian densities
 – Viterbi decoding with mixture Gaussian densities

• Project 5: Training HMMs from isolated recordings (Viterbi method)
 – Recording data
 – Segmenting data
 – Training models

• Project 6: Training and recognition of isolated words
 – Record data for a chosen vocabulary
 – Train models of different structures
 – Recognition
Projects

• Project 7: HMM-based recognition of continuous word strings
 – Continuous ASR of words
 – Continuous ASR of words with optional silences
 – Training a set of word models (carried over from previous exercise)
 – Evaluation
Projects

- Project 8: Grammar-based recognition of continuous words
 - Building graphs from grammars
 - Building HMM-networks from grammars
 - Recognition of continuous word strings from a grammar
Projects

- Project 9: Grammar-based recognition from Ngram models
 - Conversion of Ngrams to FSGs
 - Grammar-based recognition of continuous speech from Ngrams
Projects

• Project 10: Baum-Welch training

• Project 11: Sub-word units – learning models for phonemes
 – Recognition using words

• Project 12: Context-dependent units – learning models for context dependent units
Projects

• Project 14: Decoding with context dependent units
 – Build word models

• Project 15: Decision trees and state tying
Tasks

• Form Teams
 – Otherwise teams will be assigned
 – Email me your teams by Sunday night
 • You will be arbitrarily assigned to a team on Monday

• Projects 0 and 1 will be due on Wednesday, the 27th
 – Presentation of running code with visual output
Project 0

• Audio capture:
 – Live capture of audio

• A program that
 – Captures audio directly from microphone
 • Responds to keyhit – keyhit to turn on record, keyhit to turn it off
 • Externally set sampling rate and sample format
 – 16000hz, 16-bit samples, 8000hz, 16-bit sampling
 – Performs some action on streaming audio
 • Compute the sum of blocks of audio
 – 400 sample windows, a shift of 100 samples between windows

• Portaudio: www.portaudio.com/
Project 1

- Feature computation
- Will be assigned next Wednesday.