Welcome

Spring 2010: Design and Implementation of Speech Recogintion Systems

Instructors: Bhiksha Raj Rita Singh, Mosur Ravishankar

Administrivia

- Short lecture today (only very brief introduction)
- Still resolving logistic issues
 - 3 different numbers
 - 11756 / 18799D / ??
 - Not all students on my lists
 - Not all students receiving all notifications
- Course listings conflict on different webpages
 - CMU: Monday/Wed, GHC
 - LTI: Tue/Thu, GHC
 - ECE: Monday/Wed, HH

Administrivia

- Course website:
- http://asr.cs.cmu.edu/
- TA: Not yet assigned
- Instructor: Bhiksha Raj
 - GHC 6705
 - bhiksha@cs.cmu.edu
 - Phone: 8-9826
 - Office hours: TBD

What will the course be about

- This will be a hands-on course
 - Everyone is expected to code
 - Extensively
 - You may use any programming language
 C, C++, Java, LISP, Matlab, Python, Ruby...
- The stress will not be on theory
 It will be on hands-on practice
- We will discuss algorithms and implementation details

- Teams must present projects
 - Each team gets to present every project
 - Presentations will be brief: 5-10mins
- Grading based entirely on how many "projects" are correctly completed

Format of Course

- Lectures
- A series of projects of exponentially increasing complexity
- Projects are arranged in multiple levels
 - Isolated word recognition
 - Continuous speech recognition
 - Grammar based recognition
 - Ngrams
 - Sub-word units
 - Parameter sharing
 - Approximate decoding strategies

Format of Course

- Students will be grouped into a small number of teams
- Projects must be completed by teams
- Every team is expected to present their work at various stages of each project
 - Code description
 - Algorithmic and implementation details
 - Problems faced, solutions etc.

- Project 1: Capturing Audio
- Project 2: Feature computation
 - Plug feature computation into audio capture
 - Modify feature computation for buffered audio
 - Visualize various partial results in feature computation
 - Modify various parameters and visualize output
- Project 3: DTW-based recognition of isolated words
 - String matching using DP
 - Generalize string matching to DTW
 - Record templates
 - Create feature-based templates
 - Pattern matching and recognition

- Project 4: HMM-based recognition of isolated words
 - Viterbi decoding with simple Gaussian densities
 - Viterbi decoding with mixture Gaussian densities
- Project 5: Training HMMs from isolated recordings (Viterbi method)
 - Recording data
 - Segmenting data
 - Training models
- Project 6: Training and recognition of isolated words
 - Record data for a chosen vocabulary
 - Train models of different structures
 - Recognition

- Project 7: HMM-based recognition of continuous word strings
 - Continuous ASR of words
 - Continuous ASR of words with optional silences
 - Training a set of word models (carried over from previous exercise)
 - Evaluation

- Project 8: Grammar-based recognition of continuous words
 - Building graphs from grammars
 - Building HMM-networks from grammars
 - Recognition of continuous word strings from a grammar

- Project 9: Grammar-based recognition from Ngram models
 - Conversion of Ngrams to FSGs
 - Grammar-based recognition of continuous speech from Ngrams

- Project 10: Baum-Welch training
- Project 11: Sub-word units learning models for phonemes
 - Recognition using words
- Project 12: Context-dependent units learning models for context dependent units

- Project 14: Decoding with context dependent units
 - Build word models
- Project 15: Decision trees and state tying

Tasks

- Form Teams
 - Otherwise teams will be assigned
 - Email me your teams by Sunday night
 - You will be arbitrarily assigned to a team on Monday
- Projects 0 and 1 will be due on Wednesday, the 27th
 - Presentation of running code with visual output

- Audio capture:
 - Live capture of audio
- A program that
 - Captures audio directly form microphone
 - Responds to keyhit keyhit to turn on record, keyhit to turn it off
 - Externally set sampling rate and sample format
 - 16000hz, 16-bit samples, 8000hz, 16-bit sampling
 - Performs some action on streaming audio
 - Compute the sum of blocks of audio
 - 400 sample windows, a shift of 100 samples between windows
- Portaudio: www.portaudio.com/

- Feature computation
- Will be assigned next Wednesday..