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Topics for today

• The problem with word models
• Subword unitsSubword units
• Phonetic networks
• What is a good subword unitWhat is a good subword unit
• The effect of context
• Building word graphs• Building word graphs
• Simplifying decoding structures
• Some speed up issues• Some speed-up issues
• Summary

2



What does a Recognizer do
• Automatic speech recognition systems attempt to 

learn and identify units of sound in an utterance

• The “units” may be anything
o They could be entire sentences, words or something finer

• To recognize a unit when it is spoken the system 
must learn models for it from training examples

o We cover training in a later lecture

• The recognizer can recognize any of the units it has 
models for
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The problem with word models
• Word model based recognition:

o Obtain a “template” or “model” for every word you want to 
irecognize

 And maybe for garbage
o Recognize any given input data as being one of the known words

• Problem: We need to train models for every word we wish 
to recognizeg

o E.g., if we have trained models for words “zero, one, .. nine”, and 
wish to add “oh” to the set, we must now learn a model for “oh”

• Training needs data
o We can only learn models for words for which we have training 

data available
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Zipf’s Law
• Zipf’s law: The number of events that occur often is 

small, but the number of events that occur very rarely is 
very large.very large.

o E.g. you see a lot of dogs every day. There is one species of 
animal you see very often.

o There are thousands of species of other animals you don’t seeo There are thousands of species of other animals you don t see 
except in a zoo. i.e. there are a very large number of species 
which you don’t see often.

• If n represents the number of times an event occurs in a 
unit interval, the number of events that occur n times 
per unit time is proportional to 1/n, where  is greater 
than 1

o George Kingsley Zipf originally postulated that  = 1.
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o George Kingsley Zipf originally postulated that   1. 
 Later studies have shown that  is 1 + , where  is slightly greater 

than 0



Zipf’s Law
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• Th f ll i l f th t f t d th l t f t

Zipf’s Law also applies to Speech and Text
• The following are examples of the most frequent and the least frequent 

words in 1.5 million words of broadcast news representing 70 of hours 
of speech

o THE:  819008 900
o AND: 38000
o A: 34200
o TO: 31900
o ..
o ADVIL: 1
o ZOOLOGY: 1

• Some words occur more than 10000 times (very frequent)
o There are only a few such words: 16 in all

• Others occur only once or twice – 14900 words in ally
o Almost 50% of the vocabulary of this corpus

• The variation in number follows Zipf’s law: there are a small number of 
frequent words, and a very large number of rare words
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frequent words, and a very large number of rare words
o Unfortunately, the rare words are often the most important ones – the ones 

that carry the most information



Word models for Large Vocabularies
• If we trained HMMs for individual words, most words 

would be trained on a small number (1-2) of 
instances (Zipf’s law strikes again)instances (Zipf s law strikes again)

o The HMMs for these words would be poorly trained
o The problem becomes more serious as the vocabulary size 

increasesincreases

• No HMMs can be trained for words that are never 
i th t i iseen in the training corpus

• Direct training of word models is not an effectiveDirect training of word models is not an effective 
approach for large vocabulary speech recognition
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Sub-word Units
• Observation: Words in any language are formed by 

sequentially uttering a set of sounds

• The set of these sounds is small for any language

• We solve the problem by decomposing words into• We solve the problem by decomposing words into 
sub-word units

o Units that are smaller than words, that must be concatenated 
t f dto form words

o Typically phonemes

• Any word in the language can be defined in terms of 
these units
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Phonemes and Dictionaries
• The mapping from words to phoneme sequences must be 

specified
o Usually specified through a mapping table called a dictionary

Eight ey t

Mapping table (dictionary)

Eight ey   t
Four f    ow   r
One w    ax   n
Zero z    iy     r   owy
Five f    ay    v
Seven s   eh   v   ax  n

• Every word in the training corpus is converted to a sequence of• Every word in the training corpus is converted to a sequence of 
phonemes

o The transcripts for the training data effectively become sequences 
of phonemes
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of phonemes
• HMMs are trained for the phonemes



Di ib i f h i h BN

Beating Zipf’s Law
• Distribution of phonemes in the BN corpus

Histogram of the number of occurrences of the 39 phonemes in 
 ll  d  f d  1.5 million words of Broadcast News

• There are far fewer “rare” phonemes, than words
o This happens because the probability mass is distributed among 

fewer unique events
• If we train HMMs for phonemes instead of words, we will have 
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enough data to train all HMMs



But we want to recognize Words
• Recognition will still be performed over words

o The Bayes’ equation for speech recognition remains unmodified

• The HMMs for words are constructed by concatenating the HMMs for y g
the individual phonemes within the word

o In order to do this we need a phonetic breakup of words
o This is provided by the dictionary
o Since the component phoneme HMMs are well trained, the constructed 

word HMMs will also be well trained, even if the words are very rare in the 
training data

• This procedure has the advantage that we can now create word HMMs• This procedure has the advantage that we can now create word HMMs 
for words that were never seen in the acoustic model training data

o We only need to know their pronunciation
o Even the HMMs for these unseen (new) words will be well trained( )
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Eight Eight Four One Zero Five Seven
Word-based Recognition

Eight      Eight        Four            One          Zero        Five     Seven
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Word as unit 

Decoder

Trainer
Learns characteristics

of sound units
Insufficient data to train 
every word. Words not 
seen in training not 

Decoder
Identifies sound units based 

on learned characteristics

recognized

RecognizedEight             Four   Five     Eight       One
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Eight Eight Four One Zero Five Seven
Phoneme based recognition

Eight      Eight        Four            One          Zero        Five     Seven

Eight Eight Four One Zero Five Seven
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Map words into 
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Decoder
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Zero:    z iy r ow
Five:     f ay v
Seven: s e v e n
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Eight Eight Four One Zero Five Seven
Phoneme based recognition
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Eight Eight Four One Zero Five Seven
Phoneme based recognition

Eight      Eight        Four            One          Zero        Five     Seven

Eight Eight Four One Zero Five Seven

Trainer Map words intoDictionary
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Decoder
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of sound units

Map words into 
phoneme sequences
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Four:    f ow r
One:    w a n

Decoder
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Words vs. Phonemes
Eight      Eight        Four            One          Zero        Five     Seven

Unit = whole word 
Average training examples per unit = 7/6 =~ 1.17 

ey t ey t f ow r w a n z iy r ow f ay v s e v e n

Unit = sub-word
Average training examples per unit = 22/14 =~ 1.57 

More training examples = better statistical estimates of model (HMM) parameters

Th diff b t t i i i t / it f h d d i

e age t a g e a p es pe u t / 5
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The difference between training instances/unit for phonemes and words increases
dramatically as the training data and vocabulary increase



How do we define phonemes?

• The choice of phoneme set is not obvious
o Many different variants even for Englishy g

• Phonemes should be different from one another, 
otherwise training data can get diluted
o Consider the following (hypothetical) example:
o Two phonemes “AX” and “AH” that sound nearly the 

same
 If during training we observed 5 instances of “AX” and 5 ofIf during training we observed 5 instances of AX  and 5 of 

“AH”
 There might be insufficient data to train either of them properly
 However if both sounds were represented by a common
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 However, if both sounds were represented by a common 
symbol “A”, we would have 10 training instances!



Defining Phonemes
• They should be significantly different from one another to 

avoid inconsistent labelling
o E.g. “AX” and “AH” are similar but not identical

o ONE:   W AH N
 AH is clearly spoken

o BUTTER:  B AH T AX R
 The AH in BUTTER is sometimes spoken as AH (clearly enunciated),The AH in BUTTER is sometimes spoken as AH (clearly enunciated), 

and at other times it is very short “B AH T AX R”
 The entire range of pronunciations from “AX” to “AH” may be 

observed
– Not possible to make clear distinctions between instances of B AX T and 

B AH T
 Training on many instances of BUTTER can result in AH models that 

are very close to that of AX!
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are very close to that of AX!
– Corrupting the model for ONE!



Defining a Phoneme
• Other inconsistencies are possible

o Diphthongs are sounds that begin as one vowel and end as another, 
e.g. the sound “AY” in “MY”g

o Must diphthongs be treated as pairs of vowels or as a single unit?
o An example

“AAEE” “MISER”

“AH” “IY” “AY”
o Is the sound in Miser the sequence of sounds “AH IY” or is it the
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o Is the sound in Miser the sequence of sounds AH IY , or is it the 
diphthong “AY”



Defining a Phoneme
• Other inconsistencies are possible

o Diphthongs are sounds that begin as one vowel and end as another, 
e.g. the sound “AY” in “MY”g

o Must diphthongs be treated as p of vowels or as a single unit?
o An example

“AAEE” “MISER”

Some differences in transition structure

“AH” “IY” “AY”
o Is the sound in Miser the sequence of sounds “AH IY” or is it the
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o Is the sound in Miser the sequence of sounds AH IY , or is it the 
diphthong “AY”



A Rule of Thumb
• If compound sounds occur frequently and have smooth 

transitions from one phoneme to the other, the compound sound 
can be single sound

o Diphthongs have a smooth transition from one phoneme to the next
 Some languages like Spanish have no diphthongs – they are always 

sequences of phonemes occurring across syllable boundaries with no 
guaranteed smooth transitions between the twoguaranteed smooth transitions between the two

• Diphthongs: AI, EY, OY (English), UA (French) etc.
o Different languages have different sets of diphthongsg g p g

• Stop sounds have multiple components that go together
o A closure, followed by burst, followed by frication (in most cases)

• Some languages have triphthongs
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Phoneme Sets
• Conventional Phoneme Set for English:

o Vowels:  AH, AX, AO, IH, IY, UH, UW etc.
o Diphthongs:  AI, EY, AW, OY, UA etc.
o Nasals:  N, M, NG
o Stops:    K, G, T, D, TH, DH, P, Bp , , , , , , ,
o Fricatives and Affricates:  F, HH, CH, JH, S, Z, ZH etc.

• Different groups tend to use a different set of phonemesDifferent groups tend to use a different set of phonemes
o Varying in sizes between 39 and 50!
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Recognition with Subword Units
• Word based recognition Review:

P(red)

P(green)

P(blue)

P(green)

o Create a large “grammar” HMM using the HMMs for 
individual wordsindividual words

o Find the best state sequence through the grammar HMM
o This also gives us the best word sequence automatically
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Recognition with Phonemes
• The phonemes are only meant to enable 

better learning of templates
o HMM or DTW models

• We still recognize wordsWe still recognize words
• The models for words are composed from the 

models for the subword unitsmodels for the subword units
• The HMMs for individual words are 

connected to form the Grammar HMMconnected to form the Grammar HMM
• The best word sequence is found by Viterbi 

decoding

25
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Recognition with phonemes
Example:

Word                       Phones                  
Rock                        R  AO  K                

• Each phoneme is modeled by an HMM
• Word HMMs are constructed by concatenating HMMs of phonemes
• Composing word HMMs with phoneme units does not increase the 

complexity the grammar/language HMM

HMM for /R/ HMM for /AO/ HMM for /K/

26Composed HMM for ROCK



A simple grammar that recognizes either the phrase
Recognition with phonemes

A simple grammar that recognizes either the phrase
“DOG STAR” or “ROCK STAR”

Rock

Dog

Star

HMM for /D/ HMM for /AO/ HMM for /G/

HMM for /S/ HMM for /T/ HMM for /AA/ HMM for /R/

HMM for /R/ HMM for /AO/ HMM for /K/

Thick lines represent connections between phonemes
d ti b t d

27

and connections between words



Recognizing Odd vs. Even
SG

ODD

P(Odd | Odd)This word-level FSG

START END

EVEN

P(Even | Odd)

EVEN

Translates to this
HMM structure

HMM for /AO/ HMM for /D/
HMM structure

ENDSTART

28HMM for /IY/ HMM for /V/ HMM for /EH/ HMM for /N/



Building Word Model Networks

• Procedure for building word model networks:

1. Compose word graph from grammar
2. For each word in the graph, derive the 

pronunciation from a pronunciation dictionary
3. Compose HMM for the word from the HMMs for 

th hthe phonemes
4. Replace each edge representing a word in the 

h b th HMM f th t dgraph by the HMM for that word
5. Decode
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Composing a Word HMM
• Words are linear sequences of phonemes

• To form the HMM for a word the HMMs forTo form the HMM for a word, the HMMs for 
the phonemes must be linked into a larger 
HMM

• Two mechanisms:
o Explicitly maintain a non-emitting state betweeno Explicitly maintain a non emitting state between 

the HMMs for the phonemes
 Computationally efficient, but complicates time-

synchronous searchsynchronous search
o Expand the links out to form a sequence of 

emitting-only states
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Linking Phonemes via Non-emitting State
• For every phoneme any state sequence can terminate in any state s

with a probability Ps (phoneme) (which can be 0). 
o This is often represented as a transition into an absorbing state with 

probability P (phoneme)probability Ps (phoneme)

Absorbing state

• For every phoneme any state sequence can begin at any state s with a 
probability s (phoneme) (which can be 0)probability s (phoneme) (which can be 0)

o This can be represented as transitions from a generating state with 
probability s (phoneme)

Generating state

o Often we only permit the first state of the HMM to have non-zero  In this

g
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o Often we only permit the first state of the HMM to have non-zero s. In this 
case the generating state may be omitted



Linking Phonemes via Non-emitting State
• To link two phonemes, we create a new “non-

emitting” state that represents both the absorbing 
state of the first phoneme and the generating state ofstate of the first phoneme and the generating state of 
the second phoneme

Phoneme 1 Phoneme 2

Phoneme 1 Phoneme 1

32
Non-emitting state



What is a non-emitting state
• A non-emitting state emits no observationsA non emitting state emits no observations

o P(O1, O2, …, OK, OK+1, …, ON, s1, s2,.., sk, sNE, sk+1,…, sN) =

P( )P( | ) P( | ) P( | ) P( | ) P( | )P(s1)P(s2|s1)… P(sK|sK-1) P(sNE|sK) P(sK+1|sNE)…P(sN|sN-1)
P(O1|s1)… P(OK|sK) P(OK+1|sK+1)…P(ON|sN)

o Yellow highlights terms from non-emitting state and blues 
show terms adjoining transition through non-emitting state
Th i b ti b bilit i t d ith tho There is no observation probability associated with the 
non-emitting state

• Viterbi decoding through a non-emitting state:Viterbi decoding through a non emitting state:
o Below we represent the transition probability P(s|s’) as 

t(s’,s)

33
' 1( ) max ( ') ( ', ) ( | )T s T TP s P s t s s P O s ' 1( ) max ( ') ( ', )T s TP s P s t s s
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Stepping through a NULL state

A
X

N
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Stepping through a NULL state
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N
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Stepping through a NULL state
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Stepping through a NULL state
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Stepping through a NULL state
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Stepping through a NULL state

A
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N
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Stepping through a NULL state

A
X

N
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Linking Phonemes Directly
• Transitions into absorbing states of the first phoneme are 

factored into the transitions from the generating state of the 
second

• Let tph1(s,A) be transition probabilities from any state s to the 
absorbing state of phoneme 1

• Let tph2(G,s) be transition probabilities from the generating state 
of phoneme 2 into any state s

• The joint HMM will now have direct transitions from state si of 
phoneme 1 to state sj of phoneme 2 with probabilities 

tph1,ph2(si, sj) = tph1(si,A) tph2(G,sj)

o Every combination of si and sj must be considered when making 
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Linking Phonemes Directly

1 2 3 a xg

Phoneme 1 Phoneme 2

y z

Ph 1 Ph 1Phoneme 1 Phoneme 1

1 2 3 x zy

t2atgx t3atgx t2atgy t3atgy

• Colour codes to show the probabilities of each transition
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The problem of pronunciation
• There are often multiple ways of pronouncing a word.

o Sometimes these pronunciation differences are semantically 
i f lmeaningful:

 READ   :    R IY D            (Did you read the book)
 READ   :    R EH D          (Yes I read the book)

o At other times they are not
 AN  :     AX N                  (That’s an apple)
 AN  :     AE N                  (An apple)

• These are typically identified in a dictionary through 
markers

o READ(1)   :  R IY D
o READ(2)   :  R EH D
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Handling multiple pronunciations
• While building a “grammar” HMM, every pronunciation 

of the word must be separately considered
o Each instance of a word in the grammar will be represented byo Each instance of a word in the grammar will be represented by 

multiple parallel paths in the finite state graph, one for each 
pronunciation

o E.g.   (I | WE) (READ | WRITE) (BOOKS | PAPERS)

READ(1)

WE

I

READ

WRITE

BOOKS

PAPERS

WE

I

READ(2)

WRITE

BOOKS

PAPERS

o If edges have probabilities, every copy of the word will carry 
the same probability

I WRITE PAPERS
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the same probability



Handling multiple pronunciations
• Multiple word pronunciations may be more 

compactly represented by graphs
o READ : R (EH | IY) D
o AN : (AX | AE) N

• In this case there is no need to create 
multiple parallel edges in the grammar to p p g g
represent multiple pronunciations

H th HMM f th d it lf• However, the HMM for the word itself 
becomes more complex
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HMM for word with multiple prons.
• The HMM for the word must represent the 

pronunciation graph
o HMM construction must consider branching into / mergingo HMM construction must consider branching into / merging 

from multiple phonemes

• Once again the HMM could be constructed either via• Once again, the HMM could be constructed either via 
non-emitting states or by direct linkage

Th HMM f READ R (EH | IY ) D• The HMM for READ :  R (EH | IY ) D
o HMM FOR R, HMM for EH, HMM for IY, HMM for D
o HMM for READ
o Using non-emitting states
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“READ” using non-emitting states
R IYR IY

EH D

R D
IY

R D

EH
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“READ” using non-emitting states
R IYR IY

EH D

R D
IY

R D

EH

52

• Transition probabilities from non-emitting state into EH and IY 
are identical to transition probabilities from the original 
generating states of EH and IY



“READ” using non-emitting states
R IYR IY

EH D

R D
IY

R D

EH
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• Transition probabilities into non-emitting state from EH and IY 
are identical to transition probabilities into the original absorbing 
states of EH and IY



“READ” using non-emitting states
IY

R D
IY

• A break from theory:  
The sum of all outgoing transition probabilities from any state

EH

o The sum of all outgoing transition probabilities from any state 
should theoretically sum to 1.0

o Here, however, the probabilities of the two blue arcs sum to 1.0, as 
do the probabilities of the two red arcsp

o The total probability of all outgoing arcs from the first non-emitting 
state is greater than 1.0
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• The probabilities may be normalized to sum to 1.0 for theoretical 
consistency, but practically, this is often not effective



Building with direct connections
• Phonemes may be linked via direct connection

o No non-emitting states

• The HMM structure now becomes more 
complexcomplex
o All transitions into multiple phonemes (R->[IY, EH]) 

at branching points must be considered
o All transitions from multiple phonemes ([IY,EH]->D) 

must be considered
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Fully connected HMM for READ

R D
IY

• Save your time ..
EH
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It can get more complex
• ALLENBY :    AE L (EH | AX) (N | M) B IY

• This is best done with non-emitting states
• Directly linking the phonemes without non-y g p

emitting states can result in the addition of a 
very large number of transitions
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Mutiple phones at the begin/end
• Multiple alternative phonemes may be likely 

at the beginnings and ends of words
(AX | AE) No (AX | AE) N

• Multiple phonemes at the beginning:  The 
number of states in the HMM with non-zero 
initial probabilities will be the sum of the 
number of such states in each of the entrynumber of such states in each of the entry 
phonemes
o I.e. no. of non-zero initial prob. states in AX + the 

fno. of non-zero initial prob. states in AE
o These can be represented as transitions out of a 

generating state for the word

58
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Mutiple phones at the begin/end
AEAE

N

• Similarly, the probability of terminating in the various states of 
pronunciations with multiple alternate terminal phonemes
(e g OF AX (F | V)) can be represented thro gh a common absorbing state

AX

(e.g. OF: AX (F | V)) can be represented through a common absorbing state

AX
F

AX

59
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Associating Probabilities With Prons
• Some pronunciations are more probable than others. We may 

want to incorporate these a priori probabilities into the search
o E.g. “AE N” is used much less frequently than “AX N”
o Prob(AE N) = 0.2;   Prob(AX N) = 0.8

• If multiple pronunciations are represented by multiple edges,If multiple pronunciations are represented by multiple edges, 
then  we simply associate an additional probability with each 
edge

WE READ BOOKS WE READ(2) BOOKS

READ(1)




 

I WRITE PAPERS I WRITE PAPERS
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Associating Probabilities With Prons
• For phoneme networks, probabilities will be 

part of the graph:
o READ:   R  (IY <0.8> | EH <0.2>) D

• The probabilities can be factored into the 
t iti b t t t f htransitions between states of phonemes

M lti l b 0 8

R D
IYMultiply by 0.8

61EHMultiply by 0.2



Associating Probabilities With Prons
• For phoneme networks, probabilities will be 

part of the graph:
o READ:   R  (IY <0.8> | EH <0.2>) D

• The probabilities can be factored into the 
t iti b t t t f htransitions between states of phonemes

M lti l b 0 8

R D
IYMultiply by 0.8
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The Effect of Context
• Phonemes are not entirely consistent• Phonemes are not entirely consistent

o Different instances of a phoneme will differ according to its 
neighbours

o E.g: Spectrograms of IY in different contexts

Beam Geek

Read MeekRead Meek

63



The Effect of Context
• Phonemes are not entirely consistent• Phonemes are not entirely consistent

o Different instances of a phoneme will differ according to its 
neighbours

o E.g: Spectrograms of IY in different contexts

Beam Geek

Read MeekRead Meek
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The Effect of Context
• Every phoneme has a locus

o The spectral shape that would be observed if the phoneme were 
uttered in isolation, for a long time

AA IY UW M

o In continuous speech, the spectrum attempts to arrive at locus of 
the current soundthe current sound

PARTYING

65AA R T IY IH NGP



The Effect of Context
• Every phoneme has a locus

o For many phoneme such as “B”, the locus is simply a 
virtual target that is never reachedvirtual target that is never reached

AABAA EEBEE

o Nevertheless during continuous speech the spectrumo Nevertheless, during continuous speech, the spectrum 
for the signal tends towards this virtual locus
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The Effect of Context
• Every phoneme has a locus

o For many phoneme such as “B”, the locus is simply a 
virtual target that is never reachedvirtual target that is never reached

AABAA EEBEE

o Nevertheless during continuous speech the spectrumo Nevertheless, during continuous speech, the spectrum 
for the signal tends towards this virtual locus

67



• Th ti fl f h h i i t d ith

Variability among Sub-word Units
• The acoustic flow for phonemes:  every phoneme is associated with a 

particular articulator configuration

• The spectral pattern produced when the articulators are exactly in that• The spectral pattern produced when the articulators are exactly in that 
configuration is the locus for that phoneme

• As we produce sequences of sounds the spectral patterns shift fromAs we produce sequences of sounds, the spectral patterns shift from 
the locus of one phoneme to the next

o The spectral characteristics of the next phoneme affect the current 
phoneme

• The inertia of the articulators affects the manner in which sounds are 
produced

Th l t t d ti l t till l ti th i do The vocal tract and articulators are still completing the previous sound, even 
as we attempt to generate the next one

• As a result of articulator inertia the spectra of phonemes vary with the
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As a result of articulator inertia, the spectra of phonemes vary with the 
adjacent phonemes



L f h 1 L f h 2 L f h 3

Spectral trajectory of a phoneme is dependent on context
Locus of phoneme 1 Locus of phoneme 2 Locus of phoneme 3

Phoneme 1 Phoneme 2 Phoneme 3

Locus of phoneme 2
Locus of phoneme 3

Locus of phoneme 2
Locus of phoneme 1
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L f h 1 Locus of phoneme 2 L f h 3

Spectral trajectory of a phoneme is dependent on context
Locus of phoneme 1 Locus of phoneme 2 Locus of phoneme 3

These regions are totally
dissimilarThese regions are

totally dissimilar

Phoneme 1 Phoneme 2 Phoneme 3

Locus of phoneme 2

Locus of phoneme 3 Locus of phoneme 1
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Subword units with high variability are poor building blocks for words

• Phonemes can vary greatly from instance to instance

• Due to co-articulation effects, some regions of phonemes are 
very similar to regions of other phonemesvery similar to regions of other phonemes

o E.g. the right boundary region of a phoneme is similar to the left 
boundary region of the next phoneme

Th b d i f h hi hl i bl d• The boundary regions of phonemes are highly variable and 
confusable

o They do not provide significant evidence towards the identity of the 
phonemephoneme

o Only the central regions, i.e. the loci of the phonemes, are 
consistent

• This makes phonemes confusable among themselves
o In turn making these sub-word units poor building blocks for larger 

structures such as words and sentences
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• Ideally,  all regions of the sub-word units would be consistent



Diphones – a different kind of unit

Phoneme 1 Phoneme 2 Phoneme 3Phoneme 1 Phoneme 2 Phoneme 3

The shaded regions are similar, although the phonemes to the left are
different in the two casesdifferent in the two cases

72
Phoneme 4 Phoneme 2 Phoneme 3



Diphones – a different kind of unit
• A diphone begins at the center of one phoneme and ends at the center 

of the next phoneme

• Diphones are much less affected by contextual, or co-articulation 
effects than phonemes themselves

o All regions of the diphone are consistent, i.e. they all provide evidence for 
the identity of the diphone

o Boundary regions represent loci of phonemes and are consistento Boundary regions represent loci of phonemes and are consistent
o Central regions represent transitions between consistent loci, and are 

consistent

• Consequently diphones are much better building blocks for wordConsequently, diphones are much better building blocks for word 
HMMs than phonemes

• For a language with N phonemes, there are N2 diphones
These will require correspondingly larger amounts of training datao These will require correspondingly larger amounts of training data

o However, the actual number of sub-word units remains limited and 
enumerable
 As opposed to words that are unlimited in number
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The Diphone
• Phonetic representation of ROCK:

o ROCK:    R  AO K

• Diphone representation:• Diphone representation:
o ROCK:   (??-R),  (R-AO),  (AO-K), (K-??)
o Each unit starts from the middle of one phoneme and ends at the middle of the 

next one

• Word boundaries are a problem
o The diphone to be used in the first position (??-R) depends on the last phoneme 

of the previous word!of the previous word! 
 ?? is the last phoneme of the previous word

o Similarly, the diphone at the end of the word (K-??) depends on the next word

• We build a separate diphone based word model for every combination of• We build a separate diphone-based word model for every combination of 
preceding and following phoneme observed in the grammar

• The boundary units are SHARED by adjacent words
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Building word HMMs with diphones

HMM for /*-R/ HMM for /R-AO/ HMM for /K-*/HMM for /AO-K/

• Dictionary entry for ROCK:  /R/  /AO/  /K/
• W d b d it t i

Components of HMM for ROCK

• Word boundary units are not unique

• The specific diphone HMMs to be used at the ends of the word depend on the 
previous and succeeding word

o E g The first diphone HMM for ROCK in the word series JAILHOUSE ROCK is /S-o E.g.  The first diphone HMM for ROCK in the word series JAILHOUSE ROCK  is /S-
R/, whereas for PLYMOUTH ROCK, it is /TH-R/

• As a result, there are as many HMMs for “ROCK” as there are possible left-
neighbor, right-neighbor phoneme combinations
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Building word HMMs with diphones

HMM for /*-R/ HMM for /AO-K/ HMM for /K-*/HMM for /R-AO/HMM for / R/ HMM for /AO K/

Composed HMM for ROCK

HMM for /K /HMM for /R AO/

• We end up with as many word models forWe end up with as many word models for 
ROCK as the number of possible 
combinations of words to the right and left
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Diphone Networks

HER ROCK NECKLACE

MY ROCK COLLECTION

A ROCK STAR

• Consider this example grammar• Consider this example grammar
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Diphone Networks

HER ROCK NECKLACE

MY ROCK COLLECTION

A ROCK STAR

• Consider this example grammarConsider this example grammar
• For illustration, we will concentrate on this 

region
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Building word HMMs with diphones
/AO-K//R-AO//R-R/ /K-N/

/AO-K//R-AO//AY-R/ /K-K/
ROCKHER NECKLACE

ROCKMY COLLECTION
/AO-K//R-AO//AX-R/ /K-S/

HER ROCK NECKLACE

ROCKA STAR
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OC C C

MY ROCK COLLECTION

A ROCK STAR



Building word HMMs with diphones
/AO-K//R-AO//R-R/ /K-N/

/AO-K//R-AO//AY-R/ /K-K/
ROCKHER NECKLACE

ROCKMY COLLECTION
/AO-K//R-AO//AX-R/ /K-S/

ROCKA STAR

• Each instance of Rock is a different model
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o The 3 instances are not copies of one another

• The boundary units (gray) are shared with adjacent words



Building word HMMs with diphones

HMM for /K-*/HMM for /R-AO/

Composed HMM for ROCK

HMM for /*-R/ HMM for /AO-K/

• We end up with as many word models for 
ROCK as the number of possible words to the 

p
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Building word HMMs with diphones

Composed HMM for ROCK

• Under some conditions, portions of multiple 
versions of the model for a word can beversions of the model for a word can be 
collapsed
o Depending on the grammaro Depending on the grammar
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Diphone Networks

HER NECKLACE

MY ROCK COLLECTION

A STAR

• Consider this example grammar• Consider this example grammar
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Building word HMMs with diphones
Connections between HMMs to be built
as explained earlier

/AO-K//R-AO/
/AY R/ /K K/

MY COLLECTION
/AY-R/ /K-K/

ROCK
• As before, the transition diphones belong to both words in each case

S h ll i f h l d i ibl l h h ll
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• Such collapsing of the central word is possible only when they all 
represent the same entry in the grammar



Dog

A simple example of a complete grammar

Rock

Dog

Star

DOG STAR
SIL-D D-AO AO-G

S-T T-AA AA-R R-SIL

STAR
G-S

SIL-R R-AO AO-K K-S

ROCK

• One way of forming a Diphone-based HMM for the simple grammar 
that recognizes “DOG STAR” or “ROCK STAR”

• The boundary units (G S and K S) are actually shared by two words
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• The boundary units (G-S and K-S) are actually shared by two words



Another Example

ODD

START END

EVENEVEN

A simple grammar that allows only the words EVEN and
ODD. The probability of ODD following ODD is different from
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that of ODD following EVEN  etc.



The Full Diphone-based HMM

AO-D D-SIL

D-AO

SIL-AO

ENDSTART
D-IY

N-AO

The Diphone HMM (left)
is much more complex 
than the corresponding

IY-V V-EH EH-N N-SIL

N AO

SIL-IY

than the corresponding
phoneme-based HMM
(below)

N-IY
DAO

ENDSTART
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Building a Diphone-based recognizer
• Train models for all Diphones in the language

o If there are N phonemes in the language, there will 
b N2 di hbe N2 diphones

o For 40 phonemes, there are thus 1600 diphones; 
still a manageable numberstill a manageable number

• Build the HMM for the Grammar usingBuild the HMM for the Grammar using 
Diphone models
o There will no longer be distinctly identifiable word g y

HMM because boundary units are shared among 
adjacent words
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Word-boundary Diphones
• Cross-word diphones have somewhat different structure than within-word 

diphones, even when they represent the same phoneme combinations
o E.g. the within-word diphone AA-F in the word “AFRICA” 

i diff f h d b d di h AA F i BURKINA FASO”is different from the word-boundary diphone AA-F in BURKINA FASO”
o Stresses applied to different portions of the sounds are different
o This is true even for cross-syllabic diphones

• It is advantageous to treat cross-word diphones as being distinct from within-
word diphones

o This results in a doubling of the total number of diphones in the language to 2N2

Wh N i th t t l b f h i th l Where N is the total number of phonemes in the language
o We train cross-word diphones only from cross-word data and within-word diphones 

from only within-word data

• The separation of within-word and word-boundary diphones does not result in 
any additional complication of the structure of sentence HMMs during 
recognition
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Improving upon Diphones

Phoneme 1 Phoneme 2 Phoneme 1o e e o e e o e e

These diphones
have different
spectral structurespectral structure

• Loci may never occur in fluent speech

Phoneme 3 Phoneme 2 Phoneme 1
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• Loci may never occur in fluent speech
o Resulting in variation even in Diphones

• The actual spectral trajectories are affected by adjacent phonemes
o Diphones do not capture all effects



Triphones: PHONEMES IN CONTEXT

Phoneme 1 Phoneme 2 Phoneme 1o e e o e e o e e

These two are
different triphone
unitsunits

Phoneme 3 Phoneme 2 Phoneme 1
• Triphones represent phoneme units that are specific to a context
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p p p p
o E.g. “The kind of phoneme 2 that follows phoneme 3 and precedes phoneme 3”

• The triphone is not a triplet of phonemes – it still represents a single 
phoneme



Triphones
• Triphones are actually specialized phonemes

o The triphones AX (B, T),  AX( P, D), AX(M,G) all represent 
variations of AX

• To build the HMM for a word, we simply concatenate the HMMs 
for individual triphones in it

o E.g     R AO K :    R(??, AO) AO (R,K) K(AO,??)
o We link the HMMs for the triphones for R(??,AO), AO(R,K) and 

K(AO,??)

• Unlike diphones, no units are shared across words

• Like diphones however the boundary units R(?? AO) K(AO ??)Like diphones, however, the boundary units R(??,AO), K(AO,??) 
depend on the boundary phonemes of adjacent words

o In fact it becomes more complex than for diphones
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The Triphone-based HMM

D(AO,AO)
AO(D,D)

D(AO,Sil)

D(AO IY)

AO(Sil,D)

ENDSTART
D(AO,IY)AO(N,D)

IY(D,V)
N(EH,AO)

IY(Sil,V) N(EH,Sil)

IY(N,V) N(V,IY)
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Cross-word triphones complicate HMMs
• Triphones at word boundaries are dependent on neighbouring words.
• This results in significant complication of the HMM for the lanaguage 

(through which we find the best path, for recognition)
o Resulting in larger HMMs and slower search

LexiconDictionary
Five
Four
Nine

y
Five:              F AY V
Four:             F OW R
Nine:             N AY N
<sil>: SIL <sil>

++Breath++

= F

<sil>:             SIL
++breath++:  +breath+

Li t d h fi “ d ” d th i i ti i  F
= AY
= V
= OW
= R

Listed here are five “words” and their pronunciations in 
terms of “phones”. Let us assume that these are the only 
words in the current speech to be recognized. The 
recognition vocabulary thus consists of five words. The 
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= N
= SIL
= +breath+

ecog t o ocabu a y t us co s sts o e o ds e
system uses a dictionary as a reference for these 
mappings.



A Slightly More Complex Grammar for Illustration

Five

Four

Nine

pausep

++breath++

• We will compose an HMM for the simple grammar 
aboveabove

o A person may say any combination of the words five, nine 
and four with silences and breath inbetween
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Using (CI) Phonemes
Each coloured square represents
an entire HMM

start end Lexicon

Five
Four
Nine
<sil>
++Breath++

= F

Word boundary units are not context specific.
All words can be connected to (and from) null nodes

 F
= AY
= V
= OW
= R
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= SIL
= +breath+



Using Triphones
Using the dictionary as reference, the system first maps each word into 
triphone-based pronunciations. Each triphone further has a characteristic 
label or type, according to where it occurs in the word. Context is not initially 
known for cross word triphones

Five

known for cross-word triphones.

AY(F, V)word-internal V(AY, *)cross-wordF(*, AY)cross-word

Four R(OW, *)cross-wordOW(F, R)word-internalF(*, OW)cross-word

Nine N(*, AY)cross-word N(AY, *)cross-wordAY(N, N)word-internal

<sil> 

++Breath++

SIL

+breath+
Each triphone is modelled by an HMM
Silence is modelled by an HMM
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Breath Silence is modelled by an HMM
breath is modelled by an HMM



Using Triphones

HMM for “Five”.
This is composed of 8 HMMs.

Lexicon

Five
Four
Nine
<sil>
++Breath++

Each triple-box represents a triphone. Each triphone
model is actually a left-to-right HMM.

= F
= AY
= V
= OW
= R
= N
= SIL
= +breath+

A triphone is a single context-specific phoneme. It is not a sequence of 3 phones.
Expand the word Five
• All last phones (except +breath+) become left contexts for first phone of Five.
• All first phones (except +breath+) become right contexts for last phone of Five

98

• Silence can form contexts, but itself does not have any context dependency.
• Filler phones (e.g. +breath+) are treated as silence when building contexts. Like  silence, 
they themselves do not have any context dependency.



The triphone based Grammar HMM
f Lexicon

Five
Four

five

Nine
<sil>
++Breath++

four

W1

W2

P(W1)

P(W2)

W3

W4

P(W3)

P(W4)nine

Linking rule:
Link from rightmost color x 
with right context color y 
to leftmost color y with

sil
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to leftmost color y with 
right context color x

breath



The triphone based Grammar HMM

Lexicon

Five
Four
Nine
<sil>
++Breath++

start
end

This completes the HMM
for UNIGRAM  LANGUAGE 

All linking rules:
• Begin goes to all silence 
left contexts

MODEL based decoding.
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• All silence right contexts go to end
• Link from rightmost color x with 
right context color y to leftmost 
color y with right context color x



The triphone based Grammar HMM
• Even a simple looping grammar becomes very complicated because of 

cross-word triphones

• The HMM becomes even more complex when some of the words haveThe HMM becomes even more complex when some of the words have 
only one phoneme

o There will be as many instances of the HMM for the word as there are word 
contexts

o No portion of these HMMs will be shared!

• We can simplify this structure by using CI phonemes at either word 
entry or word exit or bothy

o This is acceptable since triphones are specialized cases of phonemes

• Typically this reduces the number of states, but not transitions
A i ti ill lt i d ti f• Approximations will result in reduction of accuracy

o Approximating word-exit triphones with CI phonemes is less harmful than 
approximating word-entry triphones
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CI Phones at the exit

Lexicon

Five
Four
Nine
<sil>
++Breath++

start
end

This completes the HMM
for UNIGRAM  LANGUAGE 

All linking rules:
• Begin goes to all silence 
left contexts

MODEL based decoding.
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• All silence right contexts go to end
• Link from rightmost color x with 
right context color y to leftmost 
color y with right context color x



Types of triphones
• A triphone in the middle of a word sounds different from the same 

triphone at word boundaries
o e.g the word-internal triphone AX(G,T) from GUT: G AX T

V d t i h AX(G T) i BIG ATTEMPTo Vs. cross-word triphone AX(G,T) in BIG ATTEMPT

• The same triphone in a single-word (e.g when the central phoneme is a 
complete word) sounds different

o E.g.  AX(G,T) in   WAG A TAIL
o The word A: AX is a single-phone word and the triphone is a single-word 

triphone

• We distinguish four types of triphones:
o Word-internal
o Cross-word at the beginning of a word
o Cross-word at the end of a word
o Single-word triphones

• Separate models are learned for the four cases and appropriately used
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Separate models are learned for the four cases and appropriately used



Context Issues
• Phonemes are affected by adjacent phonemes.
• If there is no adjacent phoneme, i.e. if a phoneme 

follows or precedes a silence or a pause that willfollows or precedes a silence or a pause, that will 
also have a unique structure

• We will treat “silence” as a context also

• “Filler” sounds like background noises etc. are 
typically treated as equivalent to silence for context

• “Voiced” filler sounds, like “UM”, “UH” etc. do affect , ,
the structure of adjacent phonemes and must be 
treated as valid contexts
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Training Data Considerations for Nphone Units

• 1.53 million words of training data (~70 hours)
• All 39 phonemes are seen (100%)

1387 f 1521 ibl di h (91%)• 1387 of 1521 possible diphones are seen (91%)
o Not considering cross-word diphones as distinct units

• 24979 of 59319 possible triphones are seen (42%)24979 of 59319 possible triphones are seen (42%)
o not maintaining the distinction between different kinds of triphones
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Counts of CI Phones

All t t i d d t h i ffi i t

Histogram of the number of occurrances of the 39 phonemes in 
1.5 million words of Broadcast News

• All context-independent phonemes occur in sufficient 
numbers to estimate HMM parameters well

o Some phonemes such as “ZH” may be rare in some corpora. 
I h th b d ith th i ilIn such cases, they can be merged with other similar 
phonemes, e.g. ZH can be merged with SH, to avoid a data 
insufficiency problem
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Counts of Diphones

C t ( i ) 10000 t h C t f t (Y i ) li d f b

“Count of counts” histogram for the 1387 diphones 
in 1.5 million words of Broadcast News

• Counts (x axis) > 10000 not shown, Count of counts (Y axis) clipped from above 
at 10

• The figure is much flatter than the typical trend given by Zipf’s law
• The mean number of occurrances of diphones is 4900p
• Most diphones can be well trained

o Diphones with low (or 0) count, e.g. count < 100, account for less then 0.1% of the total 
probability mass
 Again, contrary to Zipf’s law
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ga , co t a y to p s a
o Diphones with low count, or unseen diphones, can be clustered with other similar 

diphones with minimal loss of recognition performance



Counts of Triphones

C ( i ) 2 0 h

“Count of counts” histogram for the 24979 triphones 
in 1.5 million words of Broadcast News

• Counts (x axis) > 250 not shown
• Follows the trends of Zipf’s law very closely

o Because of the large number of triphones
• Th b f f b d t i h i 300• The mean number of occurrances of observed triphones is 300
• The majority of the triphones are not seen, or are rarely seen

o 58% of all triphones are never seen
o 86% of all triphones are seen less than 10 times
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o 86% of all triphones are seen less than 10 times
o The majority of the triphones in the langauge will be poorly trained

 Back off to CI phones or use parameter sharing techniques for these



Higher order Nphones

• Spectral trajectories are also affected by farther contexts
o E.g. by phonemes that are two phonemes distant from the current one

• The effect of longer contexts is much smaller than that of immediate g
context, in most speech

o The use of longer context models only results in relatively minor 
improvements in recognition accuracy

• The are far too many possibilities for longer context units
o E.g,  there are 405 possible quinphone units (that consider  a 2-phoneme 

context on either side), even if we ignore cross-word effects

• Cross-word effects get far more complicated with longer-context units
o Cross-word contexts may now span multiple words. The HMM for any word 

thus becomes dependent on the the previous two (or more) words, for 
instanceinstance.

o Even a simple unigram graph may end up having the same complexity as a 
trigram LM graph, as a result
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• Word models

Training Tradeoffs
• Word models

o Very effective, if they can be well trained
o Difficult to train well, when vocabularies get large

C t i d th t t i t i i d to Cannot recognize words that are not see in training data

• Context-independent phoneme models
o Simple to train; data insufficiency rarely a problemo Simple to train; data insufficiency rarely a problem
o All phonemes are usually seen in the training data

 If some phonemes are not seen, they can be mapped onto other, 
relatively common phonemesy p

• Diphones
o Better characterization of sub-word acoustic phenomena than 

simple context-independent phonemes
o Data insufficiency a relatively minor problem. Some diphones are 

usually not seen in training data.
Their HMMs must be inferred from the HMMs for seen diphones
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 Their HMMs must be inferred from the HMMs for seen diphones



Training Tradeoffs
• Triphones

o Characterizations of phonemes that account for contexts on both sides
o Result in better recognition than diphones

D t i ffi i i bl th j it f t i h t io Data insufficiency is a problem: the majority of triphones are not seen in 
training data. 
 Parameter sharing techniques must be used to train uncommon triphones 

derive HMMs for unseen triphones
o Advantage: can back-off to CI phonemes when HMMs are not available 

for the triphones themselves

• Higher order Nphone models• Higher order Nphone models
o Better characterizations than triphones, however the benefit to be 

obtained from going to Nphones of higher contexts is small
o Data insufficiency a huge problem – most Nphones are not seen in the y g p p

training data
 Complex  techniques must be employed for inferring the models for unseen 

Nphones
 Alternatively, one can backoff to triphones or CI-phonemes
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Recognition Tradeoffs

• Word models
o Very effective for recognition, when vocabularies are small

 Poor training affects large vocabulary systems
Cannot recognize words that are not seen in the training datao Cannot recognize words that are not seen in the training data

• Phoneme and Nphone models: words that are never seen in the training data can still be 
recognized

o Their HMMs can be composed from the HMMs for the phonetic unitso Their HMMs can be composed from the HMMs for the phonetic units

• Context-independent phoneme models
o Results in very compact HMMs and fast decoding speeds
o Relatively poor performanceo Relatively poor performance

• Diphones
o There are many more Diphones than CI phonemes

 The total number of HMM parameters to be stored is larger as a resulte o a u be o pa a e e s o be s o ed s a ge as a esu
o Cross-word effects complicate sentence HMM structure
o The resulting sentence HMMs are larger than those obtained with CI phonemes
o Recognition with diphones is slower but more accurate than recognition with CI phonemes
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Recognition Tradeoffs
• Triphones

o Much larger in number than diphones
 Requires the storage of a larger number of HMM components

o Cross-word effects complicate sentence HMM structurep
o Triphone-based systems are larger, slower, and more accurate than those based on diphones or CI 

phonemes 

• Higher order Nphones
o Even larger in number than triphones
o Cross-word effects are more complicated than for diphones or triphones
o Sentence HMM graphs become prohibitive in size

Wh• What to use
o Word models are best when the vocabulary is small (e.g. digits).
o CI phoneme based models are rarely used
o Where accuracy is of prime importance, triphone models are usually used
o For reduced memory footprints and speed are important, e.g. in embedded recognizers, diphone 

models are often used
o Higher-order Nphone models are rarely used in the sentence HMM graphs used for recognition. 

However, they are frequently used for rescoring

113

 Rescoring will be discussed in a future lecture.



Summary

• Have discussed subword units and the need for 
them

• Building word HMMs using subword units
• Context dependent subword unitsp

o Diphones
o Triphones
o Issues

• Tradeoffs

• Next: More details
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