Continuous Speech Recognition

Continuous Speech Recognition
3 March 2010

Preview of Topics

\square Topics so far: Isolated word recognition
\square Today: continuous speech recognition, including:

- Notion and construction of a sentence HMM
- Review construction of search trellis from sentence HMM (or any graphical model)
■ Non-emitting states for simplifying sentence HMM construction
- Modifying the search trellis for non-emitting states
\square To cover later
■ The word-level back-pointer table data structure for efficient retrieval of the best word sequence from the search trellis
- New pruning considerations: word beams, and absolute pruning
- Measurement of recognition accuracy or errors
- The generation of word lattices and N -best lists
\square The A* algorithm and the Viterbi N -best list algorithm

Isolated Word vs Continuous Speech

\square A simple way to build a continuous speech recognizer:
■ Learn Templates for all possible sentences that may be spoken
■ E.g. record "delete the file" and "save all files" as separate templates
\square For a voice-based UI to an editor

- Recognize entire sentences (no different from isolated word recognition)
\square Problem: Extremely large number of sentences possible
- Even a simple digit recognizer for phone numbers: A billion possible phone numbers!
■ Cannot record every possible phone number as template

Templates for "Sentences"

\square Recording entire sentences as "templates" is a reasonable idea
\square But quickly becomes infeasible as the number of sentences increases
\square Inflexible: Cannot recognize sentences for which no template has been recorded

Other Issues with Continuous Speech

\square Much greater variation in speaking rate
■ Having to speak with pauses forces one to speak more uniformly

- Greater variation demands better acoustic models for accuracy
\square More pronounced contextual effects
- Pronunciation of words influenced by neighboring words
- "Did you" -> "Dijjou"
\square Spontaneous (unrehearsed) speech may include mispronunciations, false-starts, non-words (e.g. umm and ahh)
\square Difficult to account for all of these
- Need templates for all pronunciation and disfluency variants
- Just how many templates will we record for each sentence?

Treat it as a series of isolated word recognition problems?

THISCAR

THISCAR

THESCAR
\square Record only word templates
■ Segment recording into words, recognize individual words
\square But how do we choose word boundaries?

- Choosing different boundaries affects the results
\square E.g. "This car" or "This scar"? "The screen" or "This green"?
\square Similar to reading text without spaces:
ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattletothestrongneit heryetbreadtothewisenoryetrichestomenofunderstandingnoryetfavourtomenofskillbu ttimeandchancehappenethtothemall

Recording only Word Templates

D ESCAR ? THESCAR?

TH I S CAR?

THISCAR?
\square Brute force: Consider all possibilities

- Segment recording in every possible way
- Run isolated word recognition on each segment
- Select the segmentation (and recognition) with the lowest total cost of match
\square I.e. cost of best match to first segment + cost of best match to second..
\square Quickly gets very complex as the number of words increases
- Combinatorially high number of segmentations
- Compounded by fact that number of words is unknown

A Simple Solution

\square Build/Record word templates
\square Compose sentence templates from word templates
\square Composition can account for all variants, disfluencies etc.
■ We will see how..

Building Sentence Templates

\square Build sentence HMMs by concatenating the HMMs for the individual words

- e.g. sentence "red green blue"

- The sentence HMM looks no different from a word HMM
- Can be evaluated just like a word HMM
\square Caveat: Must have good models for the individual words
- Ok for a limited vocabulary application
$\square \quad$ E.g. command and control application, such as robot control

Handling Silence

\square People often pause between words in continuous speech

- Often, but not always!
- Not predictable when there will be a pause
$\square \quad$ The composed sentence HMM fails to allow silences in the spoken input

■ If the input contained "[silence] red green [silence] blue [silence]", it would match badly with the sentence HMM
$\square \quad$ Need to be able to handle optional pauses between words

- Optional because they may or may not occur

Sentence HMM with Optional Silences

\square Optional silences can be handled by adding a silence HMM between every pair of words, but with a bypass:

\square The "bypass" makes it optional: The person may or may not pause

- If there is a pause, the best match path will go through the silence HMM
- Otherwise, it will be bypassed
\square The "silence" HMM must be separately trained
- On examples of recordings with no speech in them (not strictly silence)

Composing HMMs for Word Sequences

\square Given HMMs for word1 and word2
■ Which are both Bakis topology

\square How do we compose an HMM for the word sequence "word1 word2"

- Problem: The final state in this model has only a self-transition
- According the model, once the process arrives at the final state of word1 (for example) it never leaves
- There is no way to move into the next word

Introducing the Non-emitting state

\square So far, we have assumed that every HMM state models some output, with some output probability distribution
\square Frequently, however, it is useful to include model states that do not generate any observation

- To simplify connectivity
$\square \quad$ Such states are called non-emitting states or sometimes null states
\square NULL STATES CANNOT HAVE SELF TRANSITIONS
\square Example: A word model with a final null state

HMMs with NULL Final State

\square The final NULL state changes the trellis

- The NULL state cannot be entered or exited within the word

\square If there are exactly 5 vectors in word 5 , the NULL state may only be visited after all 5 have been scored

The NULL final state

\square The probability of transitioning into the NULL final state at any time t is the probability that the observation sequence for the word will end at time t
$\square \quad$ Alternately, it represents the probability that the observation will exit the word at time t

Connecting Words with Final NULL States

\square The probability of leaving word 1 (i.e the probability of going to the NULL state) is the same as the probability of entering word2

- The transitions pointed to by the two ends of each of the colored arrows are the same

Retaining a Non-emitting state between words

\square In some cases it may be useful to retain the non-emitting state as a connecting state

- The probability of entering word 2 from the non-emitting state is 1.0
- This is the only transition allowed from the non-emitting state

Retaining the Non-emitting State

HMM for the word sequence "word2 word1"

A Trellis With a Non-Emitting State

\square Since non-emitting states are not associated with observations, they have no "time"

- In the trellis this is indicated by showing them between time marks
- Non-emitting states have no horizontal edges - they are always exited instantly

Viterbi with Non-emitting States

\square Non-emitting states affect Viterbi decoding

- The process of obtaining state segmentations
$\square \quad$ This is critical for the actual recognition algorithm for word sequences

Viterbi through a Non-Emitting State

\square At the first instant only the first state may be entered

Viterbi through a Non-Emitting State

$\square \quad$ At $t=2$ the first two states have only one possible entry path

Viterbi through a Non-Emitting State

$\square \quad$ At $\mathrm{t}=3$ state 2 has two possible entries. The best one must be selected

Viterbi through a Non-Emitting State

$\square \quad$ At $\mathrm{t}=3$ state 2 has two possible entries. The best one must be selected

Viterbi through a Non-Emitting State

\square After the third time instant we an arrive at the non-emitting state. Here there is only one way to get to the non-emitting state

Viterbi through a Non-Emitting State

$\square \quad$ Paths exiting the non-emitting state are now in word2

- States in word1 are still active
- These represent paths that have not crossed over to word2

Viterbi through a Non-Emitting State

$\square \quad$ Paths exiting the non-emitting state are now in word2

- States in word1 are still active
- These represent paths that have not crossed over to word2

Viterbi through a Non-Emitting State

$\square \quad$ The non-emitting state will now be arrived at after every observation instant

Viterbi through a Non-Emitting State

\square "Enterable" states in word2 may have incoming paths either from the "cross-over" at the non-emitting state or from within the word

- Paths from non-emitting states may compete with paths from emitting states

Viterbi through a Non-Emitting State

\square Regardless of whether the competing incoming paths are from emitting or non-emitting states, the best overall path is selected

Viterbi through a Non-Emitting State

\square The non-emitting state can be visited after every observation

Viterbi through a Non-Emitting State

\square At all times paths from non-emitting states may compete with paths from emitting states

Viterbi through a Non-Emitting State

\square At all times paths from non-emitting states may compete with paths from emitting states

- The best will be selected
- This may be from either an emitting or non-emitting state

Viterbi with NULL states

\square Competition between incoming paths from emitting and nonemitting states may occur at both emitting and non-emitting states
\square The best path logic stays the same. The only difference is that the current observation probability is factored into emitting states
$\square \quad$ Score for emitting state (as probabilities)

$$
P_{u}(s, t)=P\left(x_{u, t} \mid s\right) \max _{s^{\prime}}\left(\left.P_{u}\left(s^{\prime}, t-1\right) P\left(s \mid s^{\prime}\right)\right|_{s^{\prime} \in\{\text { emititing }\}},\left.P_{u}\left(s^{\prime}, t\right) P\left(s \mid s^{\prime}\right)\right|_{s^{\prime} \in\{\text { nonemititing }\}}\right)
$$

\square Score for non-emitting state

$$
P_{u}(s, t)=\max _{s^{\prime}}\left(\left.P_{u}\left(s^{\prime}, t-1\right) P\left(s \mid s^{\prime}\right)\right|_{s^{\prime} \in\{\text { emiting }\}},\left.P_{u}\left(s^{\prime}, t\right) P\left(s \mid s^{\prime}\right)\right|_{s^{\prime} \in\{\text { \{nonenititing }\}}\right)
$$

\square Using log probabilities

$$
\begin{gathered}
\log \left(P_{u}(s, t)\right)=\log \left(P\left(x_{u, t} \mid s\right)\right)+\max _{s^{\prime}}\left(\log \left(P_{u}\left(s^{\prime}, t-1\right)\right)+\left.\log \left(P\left(s \mid s^{\prime}\right)\right)\right|_{\left.s^{\prime} \in \text { Eeniting }\right\}}, \log \left(P_{u}\left(s^{\prime}, t\right)\right)+\left.\log \left(P\left(s \mid s^{\prime}\right)\right)\right|_{\left.s^{\prime} \in \text { nonenentiting }\right)}\right) \\
\log \left(P_{u}(s, t)\right)=\max _{s^{\prime}}\left(\log \left(P_{u}\left(s^{\prime}, t-1\right)\right)+\left.\log \left(P\left(s \mid s^{\prime}\right)\right)\right|_{s^{\prime} \in \text { emiting },}, \log \left(P_{u}\left(s^{\prime}, t\right)\right)+\left.\log \left(P\left(s \mid s^{\prime}\right)\right)\right|_{\left.s^{\prime} \in \text { Inonenititing }\right)}\right)
\end{gathered}
$$

Speech Recognition as String Matching

\square We find the distance of the data from the "model" using the Trellis for the word
\square Pick the word for which this distance is lowest
\square Word = $\operatorname{argmin}_{\text {word }}$ distance(data, model(word))
\square Using the DTW / HMM analogy

- Word $=\operatorname{argmax}{ }_{\text {word }}$ probability(data $\mid \operatorname{model}($ word) $)$
\square Alternately, $\operatorname{argmax}_{\text {word }}$ logprobability(data | model)
- Alternately still: $\operatorname{argmin}_{\text {word }}$-logprobability(data \| model)

Speech Recognition as Bayesian Classification

\square Different words may occur with different frequency
■ E.g. a person may say "SEE" much more frequently than "ZEE"
$\square \quad$ This must be factored in
■ If we are not very sure they said "SEE" or "ZEE", choose "SEE"
\square We are more likely to be right than if we chose ZEE
\square The basic DTW equation does not factor this in

- Word $=\operatorname{argmax}_{\text {word }}$ probability(data | word) does not account for prior bias
$\square \quad$ Cast the problem instead as a Bayesian classification problem
- Word $=\operatorname{argmax}_{\text {word }} p($ word $)$ probability(data | word)
- " p (word)" is the a priori probability of the word
- Naturally accounts for prior bias

Statistical pattern classification

- Given data X, find which of a number of classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{N}}$ it belongs to, based on known distributions of data from $\mathrm{C}_{1}, \mathrm{C}_{2}$, etc.
- Bayesian Classification:

$$
\text { Class }=\mathrm{C}_{i}: i=\operatorname{argmax}_{j} \log \left(\mathrm{P}\left(\mathrm{C}_{j}\right)\right)+\log \left(\mathrm{P}\left(X \mid \mathrm{C}_{j}\right)\right)
$$

a priori probability of C_{j}

Probability of X as given by the probability distribution of C_{j}
\square The a priori probability accounts for the relative proportions of the classes

- If you never saw any data, you would guess the class based on these probabilities alone
$\square \mathrm{P}\left(X \mid \mathrm{C}_{j}\right)$ accounts for evidence obtained from observed data X

Isolated Word Recognition as Bayesian Classification

- Classes are words
$>$ Data are instances of spoken words
- Sequence of feature vectors derived from speech signal,

Recognized_Word $=\operatorname{argmax}_{\text {word }} \log (\mathrm{P}($ word $))+\log (\mathrm{P}(X \mid$ word $))$
$\square \mathrm{P}($ word $)$ is a priori probability of word
\square Obtained from our expectation of the relative frequency of occurrence of the word
$-\square \mathrm{P}(X \mid$ word $)$ is the probability of X computed on the probability distribution function of word

Computing $\mathrm{P}(\mathrm{X} \mid$ word $)$

$\square \mathrm{P}(X \mid$ word $)$ is computed from the HMM for the word ■ HMMs are actually probability distributions
\square Ideally $\mathrm{P}(\mathrm{X} \mid$ word $)$ is computed using the forward algorithm
\square In reality computed as the best path through a Trellis - A priori probability P (word) is factored into the Trellis

Factoring in a priori probability into Trellis

HMM for Odd

$\log (P(O d d))$

HMM for Even

BestPathLogProb(X,Even)

Log(P(Even))

The prior bias is factored in as the edge penalty at the entry to the trellis

Time-Synchronous Trellis: Odd and Even

Time Synchronous DecodeOdd and Even

$\square \quad$ Compute the probability of best path

- Computations can be done in the log domain. Only additions and comparisons are required

Decoding to classify between Odd and Even

\square Compare scores (best state sequence probabilities) of all competing words
$\square \quad$ Select the word sequence corresponding to the path with the best score

Score(X,Odd)

3 March $2010 \log (P($ Even $))$

Decoding isolated words with word HMMs

\square Construct a trellis (search graph) based on the HMM for each word

- Alternately construct a single, common trellis
\square Select the word corresponding to the best scoring path through the combined trellis

Why Scores and not Probabilities

\square Trivial reasons
■ Computational efficiency: Use log probabilities and perform additions instead of multiplications
\square Use \log transition probabilities and log node probabilities
\square Add log probability terms - do not multiply

- Underflow: Log probability terms add - no underflow
\square Probabilities will multiply and underflow rather quickly
\square Deeper reason
■ Using scores enables us to collapse parts of the trellis
- This is not possible using forward probabilities
- We will see why in the next few slides

Statistical classification of word sequences

\square Given data X, find which of a number of classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{N}}$ it belongs to, based on known distributions of data from $\mathrm{C}_{1}, \mathrm{C}_{2}$, etc.
\square Bayesian Classification:

$$
\text { Class }=\mathrm{C}_{i}: i=\operatorname{argmax}_{j} \mathrm{P}\left(\mathrm{C}_{j}\right) \mathrm{P}\left(X \mid \mathrm{C}_{j}\right)
$$

$\square \quad$ Classes are word sequences
$\square \quad$ Data are spoken recordings of word sequences
\square Bayesian classification

$$
\begin{aligned}
& \text { word }_{1}, \text { word }_{2}, \ldots, \text { word }_{N}= \\
& \arg \max _{w d_{1}, w d_{2}, \ldots, w d_{N}}\left\{P\left(X \mid w d_{1}, w d_{2}, \ldots, w d_{N}\right) P\left(w d_{1}, w d_{2}, \ldots, w d_{N}\right)\right\}
\end{aligned}
$$

- $\mathrm{P}\left(w d_{1}, w d_{2}, w d_{3} ..\right)$ is a priori probability of word sequence $w d_{1}, w d_{2}, w d_{3} .$.
- Is the word sequence "close file" more common than "delete file"..
- $\mathrm{P}\left(X \mid w d_{1}, w d_{2}, w d_{3} ..\right)$ is the probability of X computed on the HMM for the word sequence $w d_{1}, w d_{2}, w d_{3}$
- Ideally must be computed using the forward algorithm

Decoding continuous speech

First step: construct an HMM for each possible word sequence

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for each possible word sequence

- $\mathrm{P}\left(X \mid w d_{1}, w d_{2}, w d_{3} ..\right)$ is the probability of X computed on the probability distribution function of the word sequence $w d_{1}, w d_{2}, w d_{3}$.
- HMMs now represent probability distributions of word sequences
- Once again, this term must be computed by the forward algorithm

Bayesian Classification between word sequences

- Classifying an utterance as either "Rock Star" or "Dog Star"
- Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)
- This is the complete forward score at the final trellis node

Bayesian Classification between word sequences

- The a priori probability of the word sequences (P(Rock Star), P(Dog Star)) can be spread across the Trellis without changing final probabilities

Decoding between word sequences

- In reality we find the score/cost of the best paths through the trellises
- Not the full forward score
- I.e. we perform DTW based classification, not Bayesian classification Score(Rock Star) Score(Dog Star)

Time Synchronous Bayesian Classification between word sequences

Time synchronous decoding to classify between word sequences

Max (dogstar1, rockstar1)

Max (dogstar1, rockstar1)

Max (dogstar2, rockstar2)

Max (dogstar3, rockstar3)

Max (dogstar4, rockstar4)

Decoding to classify between word sequences

Decoding to classify between word sequences

- The two instances of Star can be collapsed into one to form a smaller trellis

Language-HMMs for fixed length word sequences

The Real "Classes"

\square The actual recognition is DOG STAR vs. ROCK STAR
■ i.e. the two items that form our "classes" are entire phrases
$\square \quad$ The reduced graph to the right is merely an engineering reduction obtained by utilizing commonalities in the two phrases (STAR)

- Only possible because we use the best path score and not the entire forward probability
\square This distinction affects the design of the recognition system

Language-HMMs for fixed length word sequences

\square The word graph represents all allowed word sequences in our example
■ The set of all allowed word sequences represents the allowed "language"
$\square \quad$ At a more detailed level, the figure represents an HMM composed of the HMMs for all words in the word graph
■ This is the "Language HMM" - the HMM for the entire allowed language
\square The language HMM represents the vertical axis of the trellis

- It is the trellis, and NOT the language HMM, that is searched for the best path

Language-HMMs for fixed length word sequences

Where does the graph come from

\square The graph must be specified to the recognizer

- What we are actually doing is to specify the complete set of "allowed" sentences in graph form
\square May be specified as an FSG or a Context-Free Grammar
- CFGs and FSG do not have probabilities associated with them
- We could factor in prior biases through probabilistic FSG/CFGs
- In probabilistic variants of FSGs and CFGs we associate probabilities with options
\square E.g. in the last graph

Simplification of the language HMM through lower context language models

\square Recognizing one of four lines from "charge of the light brigade"
\square If we do not associate probabilities with FSG rules/transitions

Language HMMs for fixed-length word sequences: based on a grammar for Dr. Seuss

No probabilities specified - a person may utter any of these phrases at any time

Language HMMs for fixed-length word sequences: command and control grammar

No probabilities specified - a person may utter any of these phrases at any time

Language HMMs for arbitrarily long word sequences

\square Previous examples chose between a finite set of known word sequences
\square Word sequences can be of arbitrary length

- E.g. set of all word sequences that consist of an arbitrary number of repetitions of the word bang
bang
bang bang
bang bang bang bang bang bang bang
- Forming explicit word-sequence graphs of the type we've seen so far is not possible
\square The number of possible sequences (with non-zero a-priori probability) is potentially infinite
\square Even if the longest sequence length is restricted, the graph will still be large

Language HMMs for arbitrarily long word sequences

Language HMMs for arbitrarily long word sequences

\square Constrained set of word sequences with constrained vocabulary are realistic
■ Typically in command-and-control situations
\square Example: operating TV remote

- Simple dialog systems
\square When the set of permitted responses to a query is restricted
\square Unconstrained word sequences : Natural Language
- State-of-art large vocabulary decoders
- Later in the program..

QUESTIONS?

\square Next up:
\square Specifying grammars
\square Pruning
\square Simple continuous unrestrcted speech
\square Backpointer table
\square Any questions on topics so far?

