
Hidden Markov Models for Speech Hidden Markov Models for Speech
R itiR itiRecognitionRecognition

Bhiksha RajBhiksha Raj

Recap: HMMsRecap: HMMs
T11 T22 T33

T12 T23

• This structure is a generic representation of a statistical
model for processes that generate time series

T13

model for processes that generate time series
• The “segments” in the time series are referred to as states

– The process passes through these states to generate time seriesp p g g

• The entire structure may be viewed as one generalization
of the DTW models we have discussed thus far

HMMs

Hidden Markov ModelsHidden Markov Models

• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there

d h h f ll hare, and how they can follow one another
– A set of probability distributions, one for each state, which

specifies the distribution of all vectors in that state

Markov chain

• This can be factored into two separate probabilistic entities

Data distributions

3

This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

Relation to DTW: The transition structureRelation to DTW: The transition structure
P11 P22 P33P11 P22 P33

P12 P23

T11 T22 T33

T TT12 T23

• The transitions in the HMM have associated probabilities
• Derived by counting, as we saw earlier

• The transitions in the DTW template have associated penalties
• Tij = -log(Pij)

4

Relation to DTW: The Node ScoresRelation to DTW: The Node Scores

Data distributionsP1(O) P2(O) P3(O)

• States in the HMM have associated state ouput distributions
Typically Gaussian– Typically Gaussian

– Means and variances are obtained from all the training vectors in
the segment associated with the state

• Template Nodes in DTW has an associated node cost function
– The cost associated with any node is dependent on the observation
– Ni (O) = -log(Pi(O))

• HMMs: We try to maximize probabilitiess: We y o e p ob b es
– DTW: Minimize cost

HMMs

Path Scores: Likelihoods, Log Likelihoods Path Scores: Likelihoods, Log Likelihoods
and Costsand Costs

P3(O5)

P
P23

P34

P2(O3)
P2(O4)

P11
P12

P22

• Use probabilities or likelihoods instead of cost
– Scores combines multiplicatively along a path

Path Score = P (O) P P (O) P P (O) P P (O) P P (O) P

P1(O1) P1(O2)

– Path Score = P1(O1) .P11 .P1(O2) .P12 .P2(O3) .P22 .P2(O4) .P23 .P3(O5) .P23

 Alternately use log probabilities as scores: Ni(O) = log(Pi(O)), T11 = log(P11)
– Scores add as in DTW
– Path Score = N1(O1) + T11 + N1(O2) + T12 + N2(O3) + T22 + N2(O4) + T23 + N3(O5) + T23

• Replace all “Min” operations in DTW by “Max”

• Alternately use negative log probabilities as cost: N (O) = log(P (O)) T = log(P)• Alternately use negative log probabilities as cost: Ni(O) = log(Pi(O)), T11 = -log(P11)
– Cost adds as in DTW
– Computation remains identical to DTW (with edge costs factored in)

ModellingModelling the process of speech the process of speech
productionproduction

• The HMM models the process underlying the observations as going
through a number of states
– For instance in producing the sound “W” it first goes through a stateFor instance, in producing the sound W , it first goes through a state

where it produces the sound “UH”, then goes into a state where it
transitions from “UH” to “AH”, and finally to a state where it produced
“AH”

UH
W AH

UH

• The true underlying process is the vocal tract here
– Which roughly goes from the configuration for “UH” to the configuration g y g g g

for “AH”

HMMs are abstractionsHMMs are abstractions

• The states are not directly observed
– Here states of the process are analogous to configurations of the vocal tract that

produces the signal
– We only hear the speech; we do not see the vocal tract
– i.e. the states are hidden

• The interpretation of states is not al a s ob io s• The interpretation of states is not always obvious
– The vocal tract actually goes through a continuum of configurations
– The model represents all of these using only a fixed number of states

• The model abstracts the process that generates the data
– The system goes through a finite number of states
– When in any state it can either remain at that state, or go to another with some

probability
– When at any states it generates observations according to a distribution associated

with that state

• An HMM is a statistical model for a time varying process

HMM as a statistical modelHMM as a statistical model
• An HMM is a statistical model for a time-varying process
• The process is always in one of a countable number of states at

any timey

• When the process visits in any state, it generates an observation
by a random draw from a distribution associated with that statey

• The process constantly moves from state to state. The
probability that the process will move to any state is p y p y
determined solely by the current state
– i.e. the dynamics of the process are Markovian

• The entire model represents a probability distribution over the
sequence of observations

It has a specific probability of generating any particular sequence

HMMs

– It has a specific probability of generating any particular sequence
– The probabilities of all possible observation sequences sums to 1

How an HMM models a processHow an HMM models a process

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

HMMs

HMM Parameters
0 6 0 7

• The topology of the HMM
– No. of states and allowed

transitions

0.6
0.4 0.7

0 3transitions
– E.g. here we have 3 states and

cannot go from the blue state to
the red

0.3

0.5

0.5

the red

• The transition probabilities
– Often represented as a matrix as

0 5











 3.7.0
04.6.

T
here

– Tij is the probability that when in
state i, the process will move to j





 5.05.

• The probability of beginning at
a particular state

• The state output distributions

24 Feb 2010 HMMs

• The state output distributions

HMM state output distributions
• The state output distribution represents the distribution of• The state output distribution represents the distribution of

data produced from any state
• In the previous lecture we assumed the state output p p

distribution to be Gaussian
• Albeit largely in a DTW context

1

• In reality the distribution of vectors for any state need not

)()(5.0 1

2
1),;()(mvCmv T

e
C

CmvGaussianvP  




In reality, the distribution of vectors for any state need not
be Gaussian
 In the most general case it can be arbitrarily complex

h G i i l i f hi di ib i The Gaussian is only a coarse representation of this distribution

• If we model the output distributions of states better, we can
expect the model to be a better representation of the data

24 Feb 2010 HMMs

expect the model to be a better representation of the data

Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is
a weighted combination of several Gaussian distributions

• v is any data vector P(v) is the probability given to that vector by the







1

0
),;()(

K

i
iii CmvGaussianwvP

• v is any data vector. P(v) is the probability given to that vector by the
Gaussian mixture

• K is the number of Gaussians being mixed
i h i i h f h ith G i i i d C i• wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is

its covariance

• The Gaussian mixture distribution is also a distributionThe Gaussian mixture distribution is also a distribution
• It is positive everywhere.
• The total volume under a Gaussian mixture is 1.0.

24 Feb 2010 HMMs

• Constraint: the mixture weights wi must all be positive and sum to 1

Node Score: The Gaussian Distribution
• What does a Gaussian distribution look like?

• For a single (scalar) variable, it is a bell-shaped curve representing the
density of data around the meandensity of data around the mean

• Example:

Four different scalar Gaussian
distributions, with different
means and variancesde

ns
ity

The mean is represented by ,
and variance by 2

 and  are the parameters of
the Gaussian distribution
(Taken from Wikipedia)

data

24 Feb 2010 HMMs

The Scalar Gaussian Function

• The Gaussian density function (the bell curve) is:

• p(x) is the density function of the variable x, with mean 
and variance 2

• The attraction of the Gaussian function (regardless ofThe attraction of the Gaussian function (regardless of
how appropriate it is!) comes from how easily the mean
and variance can be estimated from sample data x1, x2,
x3 … xN
�  = (Sum xi)/N
� 2 = (Sum (xi

2 – 2))/N

24 Feb 2010

(())

HMMs

The 2-D Gaussian Distribution
• Speech data are not scalar values, but vectors!

• Needs multi-variate (multi-dimensional) Gaussians• Needs multi-variate (multi-dimensional) Gaussians
• Figure: A Gaussian for 2-D data

– Shown as a 3-D plot

• Distributions for higher dimensions are tough to
visualize!visualize!

24 Feb 2010 HMMs

The Multidimensional Gaussian Distribution

I t d f i th ltidi i l G i h• Instead of variance, the multidimensional Gaussian has a
covariance matrix

• The multi-dimensional Gaussian distribution of a vector variable• The multi-dimensional Gaussian distribution of a vector variable
x with mean  and covariance  is given by:

– where N is the vector dimensionality, and det is the determinant function

f G• The complexity in a full multi-dimensional Gaussian distribution
comes from the covariance matrix, which accounts for
dependencies between the dimensions

24 Feb 2010 HMMs

The Diagonal Covariance Matrix
Full covariance:
all elements are
non-zero

Diagonal covariance:
off-diagonal elements
are zero

-0.5(x-)TC-1(x-) i (xi-i)2 / 2i
2

• In speech recognition, we frequently assume that the feature vector
dimensions are all independent of each otherp

• Result: The covariance matrix is reduced to a diagonal form
– The exponential term becomes, simply:

(i (xi – i)2/i
2)/2, i going over all vector dimensions

– The determinant of the diagonal  matrix is easy to compute
• Further, each i

2 (the i-th digonal element in the covariance matrix) is
easily estimated from xi and i like a scalar

24 Feb 2010 HMMs

Generating an observation from a
Gaussian mixture state distribution

First draw the identity of the
Gaussian from the a priori
probability distribution ofprobability distribution of
Gaussians (mixture weights)

Then draw a vector from
the selected Gaussian

24 Feb 2010 HMMs

Gaussian Mixtures
A G i i d• A Gaussian mixture can represent data
distributions far better than a simple Gaussian

• The two panels show the histogram of an e o pa e s s o e s og a o a
unknown random variable

• The first panel shows how it is modeled by a
i l G isimple Gaussian

• The second panel models the histogram by a
mixture of two Gaussians

• Caveat: It is hard to know the optimal number
of Gaussians in a mixture distribution for any
random variable

24 Feb 2010 HMMs

HMMs with Gaussian mixture state
distributions

• The parameters of an HMM with Gaussian
mixture state distributions are:
–  the set of initial state probabilities for all states
– T the matrix of transition probabilities
– A Gaussian mixture distribution for every state in

the HMM. The Gaussian mixture for the ith state is
characterized byc a ac e ed by

• Ki, the number of Gaussians in the mixture for the ith
state

The set of mixture weights w 0<j<K• The set of mixture weights wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci j 0 < j <Ki

24 Feb 2010 HMMs

The set of Covariance matrices Ci,j 0 j Ki

Three Basic HMM Problems

• Given an HMM:
– What is the probability that it will generate a a s e p obab y a ge e a e a

specific observation sequence

– Given a observation sequence, how do we
determine which observation was generated
f hi h t tfrom which state

• The state segmentation problem

– How do we learn the parameters of the HMM
from observation sequences

24 Feb 2010 HMMs

q

Computing the Probability of an Observation
Sequence

• Two aspects to producing the observation:
Precessing through a sequence of states– Precessing through a sequence of states

– Producing observations from these states

24 Feb 2010 HMMs

Precessing through states

HMM assumed to be
generating data

state
sequence

• The process begins at some state (red) here
• From that state, it makes an allowed transition

– To arrive at the same or any other state
• From that state it makes another allowed

transition
A d

24 Feb 2010 HMMs

– And so on

Probability that the HMM will follow a
particular state sequenceparticular state sequence

P s s s P s P s s P s s(, , ,...) () (|) (|)...1 2 3 1 2 1 3 2

• P(s1) is the probability that the process will initially be

(, , ,) () (|) (|)1 2 3 1 2 1 3 2

(1) p y p y
in state s1

P(|) i th t iti b bilit f i t t t• P(si | si) is the transition probability of moving to state
si at the next time instant when the system is
currently in siy i
– Also denoted by Pij earlier
– Related to edge scores in DTW as Tij = -log(P(si | si))

24 Feb 2010 HMMs

Generating Observations from States

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

• At each time it generates an observation from

24 Feb 2010 HMMs

the state it is in at that time

Probability that the HMM will generate a
particular observation sequence given aparticular observation sequence given a
state sequence (state sequence known)

P o o o s s s P o s P o s P o s(, , ,...| , , ,...) (|) (|) (|)...1 2 3 1 2 3 1 1 2 2 3 3

Computed from the Gaussian or Gaussian mixture for state s1

• P(oi | si) is the probability of generating
observation oi when the system is in state si
• Related to node scores in DTW trellis as:

N (O) = log(P(o | s))

HMMs

Ni(O) = -log(P(oi | si))

24 Feb 2010

Precessing through States and Producing
Observations

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

• At each time it produces an observation and

24 Feb 2010 HMMs

makes a transition

Probability that the HMM will generate a
particular state sequence and from it, a

particular observation sequence

P o o o s s s() P o o o s s s(, , ,..., , , ,...)1 2 3 1 2 3 

P o o o s s s P s s s(, , ,...| , , ,...) (, , ,...)1 2 3 1 2 3 1 2 3 

P o s P o s P o s P s P s s P s s(|) (|) (|)... () (|) (|)...1 1 2 2 3 3 1 2 1 3 2

24 Feb 2010 HMMs

Probability of Generating an Observation
Sequence

• If only the observation is known, the precise
state sequence followed to produce it is not
kknown

• All possible state sequences must be
considered

P o o o s s s(, , ,..., , , ,...)1 2 3 1 2 3 P o o o(, , ,...)1 2 3 

considered

all possible
state sequences

(, , , , , , ,)
.
.

1 2 3 1 2 3(, , ,)1 2 3

P o s P o s P o s P s P s s P s s
all possible

state sequences

(|) (|) (|)... () (|) (|)...
.

1 1 2 2 3 3 1 2 1 3 2

24 Feb 2010 HMMs

state sequences.

Computing it Efficiently

• Explicit summing over all state sequences is not
efficient
– A very large number of possible state sequences
– For long observation sequences it may be intractable

• Fortunately, we have an efficient algorithm for
this: The forward algorithmthis: The forward algorithm

• At each time, for each state compute the totalAt each time, for each state compute the total
probability of all state sequences that generate
observations until that time and end at that state

24 Feb 2010 HMMs

Illustrative Example

• Consider a generic HMM with 5 states and a
“terminating state”. We wish to find the probability of
the best state sequence for an observation sequencethe best state sequence for an observation sequence
assuming it was generated by this HMM
– P(si) = 1 for state 1 and 0 for others

f– The arrows represent transition for which the probability is
not 0. P(si | si) = aij

– We sometimes also represent the state output probability of
P(|) b (t) f b i

24 Feb 2010 HMMs

si as P(ot | si) = bi(t) for brevity

91

Diversion: The Trellis
nd

ex

u s t(,)

S
ta

te
 in s

Feature vectors
(time)t-1 t

• The trellis is a graphical representation of all possible paths through the
HMM to produce a given observation

– Analogous to the DTW search graph / trellis
• The Y-axis represents HMM states, X axis represents observations
• Every edge in the graph represents a valid transition in the HMM over a

single time step

24 Feb 2010 HMMs

• Every node represents the event of a particular observation being
generated from a particular state

The Forward Algorithm

 u u u u ts t P x x x state t s(,) (, ,..., , () |), , , 1 2

nd
ex

u s t(,)

S
ta

te
 in s

time
t-1 t

�  (s t) is the total probability of ALL state� u(s,t) is the total probability of ALL state
sequences that end at state s at time t,
and all observations until xt

24 Feb 2010 HMMs

t

The Forward Algorithm

 u u u u ts t P x x x state t s(,) (, ,..., , () |), , , 1 2

Can be recursively
estimated starting
from the first time nd

ex

u s t(,)1 instant
(forward recursion)

s u s t(,)

S
ta

te
 in

 s t s t P s s P x s(,) (,) (|) (|)   1

timeu t(,)1 1
t-1 t

 u u
s

u ts t s t P s s P x s(,) (,) (|) (|),


1

� u(s,t) can be recursively computed in terms of
(’ t’) th f d b biliti t ti t 1

24 Feb 2010 HMMs

u(s’,t’), the forward probabilities at time t-1

The Forward Algorithm
 TsTotalprob)(

s
u TsTotalprob),(

nd
ex

S
ta

te
 in

time
T

• In the final observation the alpha at each state gives the p g
probability of all state sequences ending at that state

• The total probability of the observation is the sum of the
alpha values at all states

24 Feb 2010 HMMs

alpha values at all states

Problem 2: The state segmentation problem

• Given only a sequence of observations,
how do we determine which sequence of q
states was followed in producing it?

24 Feb 2010 HMMs

The HMM as a generator

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

• The process goes through a series of states

24 Feb 2010 HMMs

and produces observations from them

States are Hidden

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

• The observations do not reveal the underlying

24 Feb 2010 HMMs

state

The state segmentation problem

HMM assumed to be
generating data

state

state

sequence

distributions

observation
sequence

• State segmentation: Estimate state sequence

24 Feb 2010 HMMs

given observations

Estimating the State Sequence

• Any number of state sequences could have
been traversed in producing the observation
– In the worst case every state sequence may have

produced it

• Solution: Identify the most probable state
sequence
– The state sequence for which the probability of

progressing through that sequence and gen erating
the observation sequence is maximumthe observation sequence is maximum

– i.e is maximumP o o o s s s(, , ,..., , , ,...)1 2 3 1 2 3 

24 Feb 2010 HMMs

Estimating the state sequence

• Once again, exhaustive evaluation is impossibly
expensive

• But once again a simple dynamic-programming
solution is available

P o s P o s P o s P s P s s P s s(|) (|) (|)... () (|) (|)...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s(, , ,..., , , ,...)1 2 3 1 2 3 

• Needed:
)|()|()|()|()()|(maarg PPPPPP)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss

24 Feb 2010 HMMs

Estimating the state sequence

• Once again, exhaustive evaluation is impossibly
expensive

• But once again a simple dynamic-programming
solution is available

P o s P o s P o s P s P s s P s s(|) (|) (|)... () (|) (|)...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s(, , ,..., , , ,...)1 2 3 1 2 3 

• Needed:
)|()|()|()|()()|(maarg PPPPPP)|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss

24 Feb 2010 HMMs

The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy ending
at time t is simply
– P(?,?,?,?, sx ,sy) = P(?,?,?,?, sx) P(ot|sy)P(sy|sx)

• The best state sequence that ends with s s at t will• The best state sequence that ends with sx,sy at t will
have a probability equal to the probability of the best
state sequence ending at t-1 at s times P(ot|s)P(s |s)state sequence ending at t 1 at sx times P(ot|sy)P(sy|sx)
– Since the last term is independent of the state sequence

leading to sx at t-1

24 Feb 2010 HMMs

Trellis
• The graph below shows the set of all possible

state sequences through this HMM in five time
intantsintants

24 Feb 2010 HMMs

time

94

t

The cost of extending a state sequence
• The cost of extending a state sequence ending

at sx is only dependent on the transition from sx
to s and the observation probability at sto sy, and the observation probability at sy

sy

sx

24 Feb 2010 HMMs

time

94

t

The cost of extending a state sequence

• The best path to sy through sx is simply an
extension of the best path to sxp x

sy

sx

24 Feb 2010 HMMs

time

94

t

The Recursion

• The overall best path to sx is an extension
of the best path to one of the states at the p
previous time

sy

sx

24 Feb 2010 HMMs

time
t

The Recursion

• Bestpath prob(sy,t) =
Best (Bestpath prob(s?,t) * P(sy | s?) * P(ot|sy))

sy

sx

24 Feb 2010 HMMs

time
t

Finding the best state sequence

• This gives us a simple recursive formulation to find the
overall best state sequence:

1. The best state sequence X1,i of length 1 ending at state si
is simply si.p y i

– The probability C(X1,i) of X1,i is P(o1 | si) P(si)

2. The best state sequence of length t+1 is simply given by
– (argmax Xt,i

C(Xt,i)P(ot+1 | sj) P(sj | si)) si

3. The best overall state sequence for an utterance of length
T is given by s g e by
argmax Xt,i sj

C(XT,i)
– The state sequence of length T with the highest overall probability

24 Feb 2010 HMMs 89

Finding the best state sequence

• The simple algorithm just presented is called the VITERBI
algorithm in the literature

Aft A J Vit bi h i t d thi d i i l ith– After A.J.Viterbi, who invented this dynamic programming algorithm
for a completely different purpose: decoding error correction codes!

• The Viterbi algorithm can also be viewed as a breadth-first
graph search algorithm
– The HMM forms the Y axis of a 2-D planeThe HMM forms the Y axis of a 2 D plane

• Edge costs of this graph are transition probabilities P(s|s). Node costs
are P(o|s)

– A linear graph with every node at a time step forms the X axisA linear graph with every node at a time step forms the X axis
– A trellis is a graph formed as the crossproduct of these two graphs
– The Viterbi algorithm finds the best path through this graph

24 Feb 2010 HMMs 90

Viterbi Search (contd.)

Initial state initialized with path score P(s)b (1)

24 Feb 2010 HMMs

time
Initial state initialized with path-score = P(s1)b1(1)

All other states have score 0 since P(si) = 0 for them
92

Viterbi Search (contd.)

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) a b (t)]i ij ji
State transition probability i to j

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

24 Feb 2010 HMMs

time

93

Viterbi Search (contd.)

P (t)j = max [P (t-1) a b (t)]i ij ji
State transition probability, i to j

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

24 Feb 2010 HMMs

time

94

Viterbi Search (contd.)

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

24 Feb 2010 HMMs

time

94

Viterbi and DTW

• The Viterbi algorithm is identical to the
string-matching procedure used for DTW g g p
that we saw earlier

• It computes an estimate of the state
sequence followed in producing the q p g
observation

• It also gives us the probability of the best
state sequence

24 Feb 2010 HMMs

Problem3: Training HMM parameters

• We can compute the probability of an
observation, and the best state sequence given
an observation, using the HMM’s parameters

• But where do the HMM parameters come from?• But where do the HMM parameters come from?

• They must be learned from a collection ofThey must be learned from a collection of
observation sequences

• We have already seen one technique for training
HMMs: The segmental K-means procedure

24 Feb 2010 HMMs

Modified segmental K-means AKA Viterbi training

• The entire segmental K-means
algorithm:g
1. Initialize all parameters

• State means and covariances
• Transition probabilities
• Initial state probabilities

2. Segment all training sequences
3. Reestimate parameters from segmented

training sequences
4. If not converged, return to 2

24 Feb 2010 HMMs

Segmental K-means
Initialize IterateInitialize Iterate

T1 T2 T3 T4
The procedure can be continued until convergence

C i hi d h th t t l b t li t f

24 Feb 2010 HMMs

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

A Better Technique

• The Segmental K-means technique
uniquely assigns each observation to one q y g
state

• However this is only an estimate and mayHowever, this is only an estimate and may
be wrong

• A better approach is to take a “soft”• A better approach is to take a soft
decision

Assign each observation to every state with a– Assign each observation to every state with a
probability

24 Feb 2010 HMMs

MODELS

Training by segmentation: Hard AssignmentTraining by segmentation: Hard Assignment
MODELS




1
ij x  


)(

)(

1 jsegmenti
i

jsegmenti

j x

E h t b l i l tEach vector belongs uniquely to a
segment

T1 T2 T3 T4

66

MODELS

Training by segmentation: Soft AssignmentTraining by segmentation: Soft Assignment
MODELS

 


vectorsAlli

iji
ji

j xf
f ,

,

1


 vectorsAlli
j

,

1 jif

Assignment is fractioned:

1

,
 segmentsallj

jif

Assignment is fractioned:
Every segment gets a piece of
every vector

T1 T2 T3 T4
Means and variances are computed
from fractioned vectors

67

Where do the fractions come from?

The “probability” of a state

• The probability assigned to any state s, for
any observation xt is the probability that y t p y
the process was at s when it generated xt

• We want to compute
),...,,,)((),...,,|)((2121 TT xxxststatePxxxststateP 

),...,,,)((21 TxxxststateP • We will compute first
This is the probability that the process visited

), ,,,)((), ,,|)((2121 TT

– This is the probability that the process visited
s at time t while producing the entire
observation

24 Feb 2010 HMMs

observation

Probability of Assigning an Observation to a State

• The probability that the HMM was in a particular state s
when generating the observation sequence is the
probability that it followed a state sequence that passedprobability that it followed a state sequence that passed
through s at time t

s

time

24 Feb 2010 HMMs

time
t

Probability of Assigning an Observation to a State

• This can be decomposed into two multiplicative sections
– The section of the lattice leading into state s at time t and the

section leading out of itsection leading out of it

s

time

24 Feb 2010 HMMs

time
t

Probability of Assigning an Observation to a State

• The probability of the red section is the total probability
of all state sequences ending at state s at time t

This is simply (s t)– This is simply (s,t)
– Can be computed using the forward algorithm

s

time

24 Feb 2010 HMMs

time
t

The forward algorithm

 u u u u ts t P x x x state t s(,) (, ,..., , () |), , , 1 2

Can be recursively
estimated starting
from the first time nd

ex

u s t(,)1 instant
(forward recursion)

s u s t(,)

S
ta

te
 in

 s t s t P s s P x s() () (|) (|)   1

timeu t(,)1 1
t-1 t

 u u
s

u ts t s t P s s P x s(,) (,) (|) (|),


1

 represents the complete current set of HMM parameters

24 Feb 2010 HMMs

 represents the complete current set of HMM parameters

The Future Paths

• The blue portion represents the probability of all state
sequences that began at state s at time t

Like the red portion it can be computed using a backward– Like the red portion it can be computed using a backward
recursion

time

24 Feb 2010 HMMs

time
t

The Backward Recursion

 u u t u t u Ts t P x x x state t s(,) (, ,..., | () ,), , ,  1 2

u N t(,)1 Can be recursively
estimated starting
from the final time

u s t(,)1su s t(,) time instant
(backward recursion)

t+1t

 u u ts t s t P s s P x s(,) (,) (|) (|)    1 1

time

 u u
s u t(,) (,) (|) (|),
 1

� u(s,t) is the total probability of ALL state sequences
that depart from s at time t and all observations after x

24 Feb 2010 HMMs

that depart from s at time t, and all observations after xt
� (s,T) = 1 at the final time instant for all valid final states

The complete probability

  u u u u u Ts t s t P x x x state t s(,) (,) (, ,..., , () |), , , 1 2

u N t(,)1

su s t(,)1 u s t(,)1

t+1tt-1
timeu t(,)1 1

 P state t su(, () |)X 

24 Feb 2010 HMMs

Posterior probability of a state

• The probability that the process was in
state s at time t, given that we have , g
observed the data is obtained by simple
normalization

P state t s P state t s
P state t s

s t s t
s t s tu

u

u
s

u u

u u
s

(() | ,) (, () |)
(, () |)

(,) (,)
(,) (,)

 

 


 

 

X X
X

 


 
 

• This term is often referred to as the
t d d t d b

s s 

gamma term and denoted by s,t

24 Feb 2010 HMMs

Update Rules

• Once we have the state probabilities (the
gammas) the update rules are obtainedgammas) the update rules are obtained
through a simple modification of the
formulae used for segmental K-meansformulae used for segmental K-means
– This new learning algorithm is known as the

Baum Welch learning procedureBaum-Welch learning procedure

Case1: State output densities are• Case1: State output densities are
Gaussians

24 Feb 2010 HMMs

Update Rules

 x1 
t

tutus x ,,,




sxs

s x
N






u t
tus

u t
s

,,


  s
T

ss xx
N

C)()(1 


 
 u t

s
T

stus

s

xx
C

,,)()(





sxsN 
u t

tus ,,

Segmental K-means Baum Welch

• A similar update formula reestimates transition probabilities

24 Feb 2010 HMMs

A similar update formula reestimates transition probabilities
• The initial state probabilities P(s) also have a similar update rule

Case 2: State ouput densities are Gaussian
Mixtures

• When state output densities are Gaussian
mixtures, more parameters must be , p
estimated

1K





0

,,,),;()|(
i

isisis CxGaussianwsxP 

• The mixture weights ws,i, mean s,i and
covariance Cs,i of every Gaussian in the s,i
distribution of each state must be
estimated

24 Feb 2010 HMMs

Splitting the Gamma
We split the gamma for any state among all the Gaussians at that state

Re-estimation of state
parameters

We split the gamma for any state among all the Gaussians at that state

p

  thP state t s P k Gaussian state t s x(() |) (| ())  X
A posteriori probability that the tth vector was generated by the kth Gaussian of state s

  k s u t u u tP state t s P k Gaussian state t s x, , , ,(() | ,) (. | () , ,)  X

24 Feb 2010 HMMs

Splitting the Gamma among Gaussians

A posteriori probability that the tth vector was generated by the kth Gaussian of state s

  k s u t u
th

u tP state t s P k Gaussian state t s x, , , ,(() | ,) (. | () , ,)  X
A posteriori probability that the tth vector was generated by the kth Gaussian of state s

   T

 
   

   
 



 

k s u t u

k s d

k

u t k s k u t k s

P state t s

w e
x xT

T

,
, , , ,

(() | ,) 

  

X
C

C1
2

1
2

1

 
   





 
k s u t u

k s d

k s

u t k s k u t k s

k
w e

x xT, , ,

,

,

, , , ,

(() | ,)


  










 C

C1
2

1
2

1

24 Feb 2010 HMMs

Updating HMM Parameters

~
,

, , , ,




k s

k s u t u ttu
x






  ~
~ ~

,

, , , , , , ,Ck s

k s u t u t k s u t k s

T

tu
x x


 



  

,
, , , k s u ttu

 , , ,k s u ttu
 

k s u t ~
,

, , ,

, , ,

wk s

k s u ttu

j s u tjtu








• Note: Every observation contributes to the update of parameter
values of every Gaussian of every statevalues of every Gaussian of every state

24 Feb 2010 HMMs

Overall Training Procedure: Single Gaussian PDF

• Determine a topology for the HMM
• Initialize all HMM parameters

– Initialize all allowed transitions to have the same
probability

– Initialize all state output densities to be GaussiansInitialize all state output densities to be Gaussians
• We’ll revisit initialization

1. Over all utterances, compute the “sufficient”
t ti tistatistics

2 Use update formulae to compute new HMM


u t

tutus x ,,,
u t

tus ,,  
u t

s
T

stus xx)()(,, 

2. Use update formulae to compute new HMM
parameters

3. If the overall probability of the training data has

24 Feb 2010 HMMs

p y g
not converged, return to step 1

An Implementational Detail

• Step1 computes “buffers” over all utterance
..,,,,,,  

U t
tus

U t
tus

t
tus 

...
21

,,,,,,,,,  
 Uu t

tutus
Uu t

tutus
u t

tutus xxx 
21  Uu tUu tu t

• This can be split and parallelized

21

..)()()()()()(
21

,,,,,,  
 Uu t

s
T

stus
Uu t

s
T

stus
u t

s
T

stus xxxxxx 

• This can be split and parallelized
– U1, U2 etc. can be processed on separate machines

Machine 1 Machine 2

–

 1

,,
Uu t

tus 
 1

,,,
Uu t

tutus x

)()(T


 2

,,
Uu t

tus 
 2

,,,
Uu t

tutus x

)()(T

a a

24 Feb 2010 HMMs





1

)()(,,
Uu t

s
T

stus xx  



2

)()(,,
Uu t

s
T

stus xx 

An Implementational Detail

• Step2 aggregates and adds buffers before updating the
models

..,,,,,,   tustustus 

...,,,,,,,,,  
 Uu t

tutus
Uu t

tutus
u t

tutus xxx 
21


 Uu tUu tu t

21  Uu tUu tu t

..)()()()()()(
21

,,,,,,  
 Uu t

s
T

stus
Uu t

s
T

stus
u t

s
T

stus xxxxxx 

   ~ ~ T
~

,

, , , ,




k s

k s u t u ttu

k s u t

x






  ~
~ ~

,

, , , , , , ,

, , ,

Ck s

k s u t u t k s u t k stu

k s u ttu

x x


 



  


, , , k s u ttu

 tu

~ , , ,wk

k s u ttu
 

24 Feb 2010 HMMs

,
, , ,

wk s
j s u tjtu

 

An Implementational Detail

• Step2 aggregates and adds buffers before updating the
models

..,,,,,,   tustustus 

...,,,,,,,,,  
 Uu t

tutus
Uu t

tutus
u t

tutus xxx 
21


 Uu tUu tu t

21  Uu tUu tu t

..)()()()()()(
21

,,,,,,  
 Uu t

s
T

stus
Uu t

s
T

stus
u t

s
T

stus xxxxxx 

   ~ ~ T
~

,

, , , ,

, , ,




k s

k s u t u ttu

k s u t

x






  ~
~ ~

,

, , , , , , ,

, , ,

Ck s

k s u t u t k s u t k stu

k s u ttu

x x


 



  


, , ,k s u ttu tu

~ , , ,wk

k s u ttu
  Computed by

machine 1
Computed by
machine 2

24 Feb 2010 HMMs

,
, , ,

wk s
j s u tjtu

 

Training for HMMs with Gaussian Mixture State
Output Distributions

• Gaussian Mixtures are obtained by splitting
1 Train an HMM with (single) Gaussian state output1. Train an HMM with (single) Gaussian state output

distributions
2. Split the Gaussian with the largest variancep g

• Perturb the mean by adding and subtracting a small number
• This gives us 2 Gaussians. Partition the mixture weight of the

Gaussian into two halves, one for each GaussianGaussian into two halves, one for each Gaussian
• A mixture with N Gaussians now becomes a mixture of N+1

Gaussians

3 Iterate BW to convergence3. Iterate BW to convergence
4. If the desired number of Gaussians not obtained,

return to 2

24 Feb 2010 HMMs

Splitting a Gaussian

 

  

• The mixture weight w for the Gaussian gets
shared as 0.5w by each of the two split
Gaussians

24 Feb 2010 HMMs

Gaussians

A ith ti d fl i bl

Implementation of BW: underflow
• Arithmetic underflow is a problem

 u u
s

u ts t s t P s s P x s(,) (,) (|) (|),   


1

• The alpha terms are a recursive product of probability terms
A t i i i l t b b bilit t

probability termsprobability term

– As t increases, an increasingly greater number probability terms are
factored into the alpha

• All probability terms are less than 1
State o tp t probabilities are act all probabilit densities– State output probabilities are actually probability densities

– Probability density values can be greater than 1
– On the other hand, for large dimensional data, probability density values are

usually much less than 1usually much less than 1
• With increasing time, alpha values decrease
• Within a few time instants, they underflow to 0

E l h t 0 t ti t All f t l h i 0

24 Feb 2010 HMMs

– Every alpha goes to 0 at some time t. All future alphas remain 0
– As the dimensionality of the data increases, alphas goes to 0 faster

Underflow: Solution

• One method of avoiding underflow is to scale
all alphas at each time instant

– Scale with respect to the largest alpha to make
sure the largest scaled alpha is 1 0sure the largest scaled alpha is 1.0

– Scale with respect to the sum of the alphas to
th t ll l h t 1 0ensure that all alphas sum to 1.0

– Scaling constants must be appropriately g pp p y
considered when computing the final probabilities
of an observation sequence

24 Feb 2010 HMMs

Implementation of BW: underflow

• Similarly, arithmetic underflow can occur during beta
computation

 )'|()|'(log)1'()(PPtt 

• The beta terms are also a recursive product of probability terms

 
'

1,)'|()|'(log)1,'(),(
s

tuuu sxPssPtsts 

The beta terms are also a recursive product of probability terms
and can underflow

• Underflow can be prevented by
– Scaling: Divide all beta terms by a constant that prevents underflowScaling: Divide all beta terms by a constant that prevents underflow
– By performing beta computation in the log domain

24 Feb 2010 HMMs

Implementation of BW: pruning

s = pruned out

• The forward backward computation can get very expensive
• Solution: Prune
• Pruning in the forward backward algorithm raises some

additional issuesadditional issues
• Pruning from forward pass can be employed by backward pass
• Convergence criteria and tests may be affected

24 Feb 2010 HMMs

• More later

Building a recognizer for isolated words

• Now have all necessary components to
build an HMM-based recognizer for g
isolated words
– Where each word is spoken by itself in p y

isolation
– E.g. a simple application, where one may g p pp , y

either say “Yes” or “No” to a recognizer and it
must recognize what was said

24 Feb 2010 HMMs

Isolated Word Recognition with HMMs

• Assuming all words are equally likely
• Training

– Collect a set of “training” recordings for each word
– Compute feature vector sequences for the words

Train HMMs for each word– Train HMMs for each word

• Recognition:
– Compute feature vector sequence for test utterance
– Compute the forward probability of the feature vector

sequence from the HMM for each wordsequence from the HMM for each word
• Alternately compute the best state sequence probability

using Viterbi
– Select the word for which this value is highest

24 Feb 2010 HMMs

– Select the word for which this value is highest

Issues

• What is the topology to use for the HMMs
– How many stateso a y s a es
– What kind of transition structure
– If state output densities have GaussianIf state output densities have Gaussian

Mixtures: how many Gaussians?

24 Feb 2010 HMMs

HMM Topology

• For speech a left-to-right topology works best
– The “Bakis” topology

Note that the initial state probability P(s) is 1 for the 1st state and– Note that the initial state probability P(s) is 1 for the 1st state and
0 for others. This need not be learned

States ma be skipped• States may be skipped

24 Feb 2010 HMMs

Determining the Number of States
• How do we know the number of states to use for

any word?
W d t ll– We do not, really

– Ideally there should be at least one state for each
“basic sound” within the word

• Otherwise widely differing sounds may be collapsed into one
state

• The average feature vector for that state would be a poor
representation

• For computational efficiency, the number of p y,
states should be small
– These two are conflicting requirements, usually

solved by making some educated guesses

24 Feb 2010 HMMs

solved by making some educated guesses

Determining the Number of States
• For small vocabularies, it is possible to examine each

word in detail and arrive at reasonable numbers:

S O ME TH I NG

• For larger vocabularies, we may be forced to rely on
some ad hoc principles
– E.g. proportional to the number of letters in the word

• Works better for some languages than others
• Spanish and Indian languages are good examples where this p g g g p

works as almost every letter in a word produces a sound

24 Feb 2010 HMMs

How many Gaussians

• No clear answer for this either
• The number of Gaussians is usually aThe number of Gaussians is usually a

function of the amount of training data
availableavailable
– Often set by trial and error

A minimum of 4 Gaussians is usually required– A minimum of 4 Gaussians is usually required
for reasonable recognition

24 Feb 2010 HMMs

Implementation of BW: initialization of alphas
and betas

• Initialization for alpha: u(s,1) set to 0 for all
states except the first state of the model.
u(s,1) set to 1 for the first state
– All observations must begin at the first state

• Initialization for beta: u(s, T) set to 0 for all
t t t th t i ti t t  (t) tstates except the terminating state. u(s, t) set

to 1 for this state
All observations must terminate at the final state– All observations must terminate at the final state

24 Feb 2010 HMMs

Initializing State Output Density Parameters

1. Initially only a single Gaussian per state assumed
• Mixtures obtained by splitting Gaussians

2. For Bakis-topology HMMs, a good initialization is the
“flat” initialization

• Compute the global mean and variance of all feature vectors in
all training instances of the word

• Initialize all Gaussians (i.e all state output distributions) with t a e a Gauss a s (e a state output d st but o s) t
this mean and variance

• Their means and variances will converge to appropriate values
automatically with iterationy

• Gaussian splitting to compute Gaussian mixtures takes care of
the rest

24 Feb 2010 HMMs

Isolated word recognition: Final thoughts

• All relevant topics covered
– How to compute features from recordings of the

words
• We will not explicitly refer to feature computation in future

lectures

– How to set HMM topologies for the words
– How to train HMMs for the words

• Baum-Welch algorithm

– How to select the most probable HMM for a test
instanceinstance

• Computing probabilities using the forward algorithm
• Computing probabilities using the Viterbi algorithm

Which also gi es the state segmentation

24 Feb 2010 HMMs

– Which also gives the state segmentation

Questions

• ?

24 Feb 2010 HMMs

